Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene affecting bone mass, osteoporosis risk identified

12.01.2004


OHSU, VAMC, Roche scientists use mouse genetics to discover Alox15 gene as potential human therapeutic target



Researchers at Oregon Health & Science University, Portland Veterans Affairs Medical Center and Roche have identified an enzyme affecting skeletal development in mice that may have relevance to human osteoporosis.

The study, titled "Regulation of Bone Mass in Mice by the Lipoxygenase Gene Alox 15," is published in the Friday, Jan. 9 edition of Science, the journal of the American Association for the Advancement of Science.


The gene, Alox15, was isolated from a region of a chromosome known to strongly influence peak bone mineral density (BMD) in mice, according to a study led by the OHSU Bone and Mineral Research Unit and VAMC. Low bone mineral density in early adulthood is considered a major risk factor for osteoporosis in humans.

Robert F. Klein, M.D., OHSU associate professor of medicine and the study’s lead author, said Alox15 was uncovered through analysis of a mouse genetic model of osteoporosis. "Between 60 percent and 80 percent of natural variations in bone density is genetically determined, and understanding this gene’s importance in normal skeletal physiology is a goal of bone and mineral research," he said. "This is a major step forward."

Gary Peltz, M.D., Ph.D., head of genetics at Roche Palo Alto and a study co-author, said: "The study demonstrates that mouse genetic discoveries can lead to new opportunities for human therapeutics. It also demonstrates how the rate of genetic discovery was accelerated by coupling genetic analysis of an experimental murine disease model with gene expression analysis."

Alox15 encodes an enzyme called 12/15-lipoxygenase that converts fatty acids into binding molecules, or ligands, for the peroxisome proliferator-activated receptor-gamma (PPARg). The PPARg receptor is present in many cell types, including pluripotent marrow stem cells that can ultimately develop into either adipocytes (fat cells) or osteoblasts (bone-forming cells).

Stimulation of the PPARg receptor system by increased 12/15-lipoxygenase activity is thought to drive differentiation of the marrow stem cells more towards marrow fat deposition and less towards bone formation, thus contributing to reduced bone density and increased risk for osteoporosis.

"We compared the pattern of gene expression in C57BL/6 and DBA/2 mice, to identify the responsible gene," Klein said. "Microarray (gene-chip) analysis indicated that Alox15 was the only differentially expressed gene within our region on chromosome 11." In fact, the rate of the gene’s expression in the low BMD DBA/2 background mice was nearly 20 times that of the congenic high BMD mice.

After showing that over-expression of the 12/15-lipoxygenase enzyme, encoded by the Alox15 gene, kept mice from reaching peak bone mass, the research team treated growing DBA/2 mice with a drug known to inhibit 12/15-lipoxygenase activity. Bone mass and strength during skeletal development improved, demonstrating that drugs can effectively counter the effects of over-activity of the Alox15 gene.

The researchers also found that drugs interfering with the 12/15-lipoxygenase pathway can offset the bone loss accompanying estrogen deficiency. "There are a variety of compounds that interfere with this pathway," Klein noted.

Osteoporosis is one of the most common bone and mineral disorders in all aging communities. It is characterized by low bone mass, resulting in low bone strength that leads to fractures from relatively minor injuries. An estimated 10 million people suffered from osteoporosis in 2002, and about 80 percent of them are women. An enzyme activated by the gene could be targeted by drugs to prevent this bone-deteriorating disorder, scientists say.

According to the National Osteoporosis Foundation, 55 percent of people ages 50 and older in the United States have either osteoporosis or low bone mass. More than 52 million people are expected to be affected by the diseases by 2010, and that amount is expected to climb to 61 million by 2020.

Eric Orwoll, M.D., professor of medicine at OHSU and a study co-author, said scientists are still years away from finding a cure for osteoporosis. But the Alox15 discovery will heighten understanding of the gene and the receptor pathway it activates, and that could accelerate the tracking of its human counterpart.

Klein and Orwoll pointed out that osteoporosis is caused by a variety of factors, including the interaction of many genes. Lifestyle and environmental factors also play key roles in a person’s risk for the disease. But the Alox15 study, Klein said, "could point to new therapies, a new approach" for treating the disease.

"It points the way toward potent, useful human therapies," said Orwoll, director of the Bone and Mineral Research Unit. Moreover, the model used to track the Alox15 gene "should be applicable to finding genes for other complex diseases."

Other study participants at OHSU included: Amy S. Carlos, B.A., research associate; Marie Shea, M.S., assistant professor of orthopaedics and rehabilitation; and John K. Belknap, Ph.D., professor of behavioral neuroscience. Collaborating scientists from Roche, Palo Alto, included: John Allard, Ph.D.; Zafrira Avnur, Ph.D.; Tania Nikolcheva, Ph.D.; David Rotstein, Ph.D.; Ruth V. Waters, B.S.; and Gary Peltz, M.D., Ph.D.

Jonathan Modie | OHSU
Further information:
http://www.ohsu.edu/news/2004/010904osteo.html
http://www.ohsu.edu/news/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>