Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Science’ showcases research on forgetting

09.01.2004


Researchers at the University of Oregon and Stanford University have located a mechanism in the human brain that blocks unwanted memories. This is the first time that anyone has shown a neurobiological basis for memory repression.



The findings, by lead researcher Michael Anderson, associate professor of psychology at the University of Oregon, and his colleague, John D.E. Gabrieli, professor of psychology at Stanford, will be published Jan. 9 in Science.

The research provides compelling evidence that Freud was on to something 100 years ago when he proposed the existence of a voluntary repression mechanism that pushes unwanted memories out of consciousness. Since then the idea of memory repression has been a vague and highly controversial idea, in part because it has been difficult to imagine how such a process could occur in the brain. Yet, the process may be more commonly applied than was previously thought.


"Often in life we encounter reminders of things we’d rather not think about," Anderson explains. "We have all had that experience at some point-the experience of seeing something that reminds us of an unwanted memory, leading us to wince briefly-but just as quickly to put the recollection out of mind. How do human beings do this?"

Anderson says that this process isn’t restricted to traumatic experiences, but is applied widely, whenever we are distracted by memories, pleasant or unpleasant.

"This active forgetting process is a basic mechanism we use to exclude any kind of distracting memory so we can concentrate on our tasks at hand."

To mimic the brain’s process in the lab, Anderson and Gabrieli tested subjects using a procedure Anderson devised. Subjects first learned pairs of words such as ordeal-roach, steam-train and jaw-gum. Then they were given the first member of each word pair and asked either to think of the second word, or to suppress awareness of the second word.

Subjects performed this task while being scanned in a functional magnetic resonance imaging (fMRI) machine that produces images of brain tissue and function. From these images, researchers can determine which parts of the brain are in use for different tasks.

After this phase was completed, Anderson tested the students’ memory for all of the word pairs and confirmed that suppressing awareness of unwanted memories resulted in memory inhibition, replicating a finding he reported earlier in the journal Nature.

The fMRI images of the subjects’ brain activity during this procedure yielded astonishing results. This study revealed for the first time strong neurobiological evidence for a novel idea about how memory repression occurs that is quite simple: unwanted memories can be suppressed with brain areas similar to that used when we try to stop overt physical actions.

Put simply, the brain systems that permit one to stop an arm motion midstream can be recruited to inhibit or stop an unwanted memory retrieval. Instead of inhibiting activity in brain regions having to do with physical action, however, these control processes reduce brain activation in the hippocampus, a structure known to be involved in conscious memories of the past. Crucially, this reduction in hippocampal activity led the subjects to forget the rejected experiences.

Anderson relates the ability to control memory to the ability to control our physical actions, like the time he knocked a plant off his windowsill at home.

"As I saw the plant falling off the sill out of the corner of my eye, I reflexively went to catch it. At the very last second, I stopped myself, midstream when I realized that the plant was a cactus."

Anderson’s research indicates that stopping unwanted memory retrievals build on the same brain mechanisms that help us to achieve this control over our overt behavior, providing a very concrete mechanism that may demystify how repression occurs. Intriguingly, Anderson and Gabrieli could predict how much forgetting people in their experiment would experience, simply by examining how active their prefrontal cortex was when attempting to suppress memories.

Anderson and Gabrieli’s clear, straightforward neurobiological model for exploring motivated forgetting in the laboratory is a landmark achievement. Until now the idea that unwanted memories can be repressed has been a controversial issue among psychologists.

The UO researcher and his associates have provided a way to scientifically investigate and map the cognitive and brain process in the laboratory. Among the immediate benefits may be the ability to better understand the cognitive and neural mechanisms by which people deal with the memory aftereffects of a traumatic experience, and the breakdown of these mechanisms in post-traumatic stress disorder.

Anderson emphasizes, however, that future research is needed to examine the role of these mechanisms in suppressing emotional experiences, as the current study focused on the suppression of relatively neutral events. Nevertheless, they also provide a well-grounded hypothesis for how some people may come to forget unwanted memories of unpleasant life experiences.

"To me what’s most important is achieving a better understanding of how we learn to adapt mental function in response to traumatic life experience," Anderson explains. "Survivors of natural disasters, crime, acts of terror such as 9/11, the loss of someone close all undergo a process that may continue for a very long time-a process of learning to adjust both physically and mentally to those events. Now we have a specific neurobiological model of the mechanisms by which people normally adapt how their memories respond to the environment. My goal is to expand on this model so we can better understand these important experiences."

Pauline Austin | EurekAlert!
Further information:
http://www.uoregon.edu/newscenter/forgetting-1.html
http://darkwing.uoregon.edu/~blevy/lab/homepage.htm
http://gablab.stanford.edu/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>