Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover New Gene Essential For The Development Of Normal Brain Connections Resulting From Sensory Input

09.01.2004


Biologists at the University of California, San Diego and the Johns Hopkins University have discovered a gene that plays a key role in initiating changes in the brain in response to sensory experience, a finding that may provide insight into certain types of learning disorders.


Images of neurons from normal mice (left) and from mice lacking CREST gene (right) Credit: Anirvan Ghosh



After birth, learning and experience change the architecture of the brain dramatically. The structure of individual neurons, or nerve cells, changes during learning to accommodate new connections between neurons. Neuroscientists believe these structural changes are initiated when neurons are activated, causing calcium ions to flow into cells and alter the activity of genes.

In a paper featured on the cover of the January 9th issue of the journal Science, biologists at UCSD and the Johns Hopkins University medical school report the discovery of the first gene, CREST, known to mediate these changes in the structure of neurons in response to calcium.


“We discovered the gene CREST using a new method we developed to identify genes that are switched on in the presence of calcium,” says Anirvan Ghosh, a professor of biology at UCSD who headed the study. “The brains of mice lacking CREST appear normal at birth, but do not develop normally in response to sensory experience after birth. This parallels some learning disorders in humans where the child appears normal initially, but by the age of two or three years it becomes clear that there are failures in the acquisition of new knowledge.”

Neurons from normal mice develop a highly branched tree-like structure. In fact, much of the growth of the brain that occurs soon after birth is the development and branching of dendrites—the part of a nerve cell that receives input from other neurons. Thus, this branching allows neurons to form many different synapses, or connections, with many other neurons, permitting much cross talk between them. Neurons taken from mice lacking the CREST gene are more linear, like a plant shoot.

In addition, when individual neurons kept alive in a Petri dish are stimulated with calcium ions, they respond by developing highly branched dendrites, but neurons taken from mice lacking CREST fail to branch in response to calcium.

“CREST is the first example of a transcription factor—a protein that turns genes on and off—that appears to be specifically required for the development of brain neurons after birth," explains Ghosh, who conducted the study at his former laboratory at Johns Hopkins.

His new laboratory at UCSD is currently working to determine what gene is targeted by CREST. Ghosh suspects the CREST gene might be turning on the production of chemicals called growth factors, for the stimulatory effect they have on cell development.

The CREST protein produced by that gene is made in several regions of the brain immediately after birth. In adults, the protein is produced in a region of the brain known as the hippocampus, which plays an important role in learning and memory. Because of this, Ghosh suspects that CREST may be necessary for the storage of new memories and the ability to learn. His laboratory is currently developing mice in which CREST expression is normal throughout most of development, so the brain develops normally, but then shuts off in the hippocampus when the mice reach adulthood. In this way, the researchers can test the specific role of CREST in learning and memory in adults.

“Humans also have CREST, and the CREST gene sequence is highly similar between mice and humans,” says Ghosh. “If it turns out that CREST plays a role in learning and memory in the mouse, then it is very likely it also plays a similar role in humans.”

The other researchers involved in the study are Hiroyuki Aizawa, Shu-Ching Hu, Kathryn Bobb, Karthik Balakriashnan, Inga Gurevich and Mitra Cowan. The study was supported by the National Institutes of Health, the March of Dimes Birth Defects Foundation, the Klingenstein Foundation, Merck and the Uehara Memorial Foundation.


Media Contact: Sherry Seethaler (858) 534-4656
Comment: Anirvan Ghosh (858) 822-4142

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/screst.asp

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>