Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study By UCSD Researchers Gives New Insight Into How Anthrax Bacteria Can Evade A Host’s Immune Response

07.01.2004


Biologists at the University of California, San Diego have determined how toxin produced by anthrax bacteria blocks a person’s normal immune response, a discovery that could lead to new treatments for anthrax infection.



In a paper to be published in the January 15th issue of The Journal of Immunology the UCSD scientists show why, in the presence of anthrax toxin, human immune cells fail to respond normally to lipopolysaccharide—a component of the cell walls of many bacteria including the bacteria that cause anthrax, Bacillus anthracis. Bacterial invasion, or the presence of lipopolysaccharide, usually causes immune cells known as macrophages to release cytokines—chemicals that signal other cells about the presence of an invader. Release of cytokines causes large numbers of immune cells to arrive at the site of infection and destroy the bacteria. By blocking this host immune response, anthrax bacteria are able to multiply unchecked. According to the Centers for Disease Control, approximately 75 percent of people infected with inhalation anthrax die, even with all possible supportive care including appropriate antibiotics.

“Although it was known for quite some time that anthrax toxins can suppress cytokine production, the mechanism by which Bacillus anthracis escapes the immune response isn’t really understood,” says Michael David, a biology professor at UCSD who headed the research team. “We have identified a protein molecule targeted by the anthrax toxin and determined where it acts in the sequence of steps involved in immune response.”


Macrophages have special receptors on their surfaces that bind to lipopolysaccharide. The binding of lipopolysaccharide to this receptor sets off a sequence of events inside the macrophage, in which a series of proteins activate one another in turn. This cascade of proteins activating one another ultimately turns on cytokine genes, causing the macrophage to churn out large quantities of cytokines.

It turns out that there are two separate, sometimes cooperating, routes in the cell by which series of proteins activate one another to switch on production of cytokines. One of the routes has been recognized for a long time, but researchers were sometimes puzzled when cytokine production was turned on or off without the proteins along this route being activated or deactivated. This puzzle was resolved when the David group and other groups simultaneously identified the second route, the IRF3 pathway. The anthrax toxin targets the IRF3 pathway by cleaving MKK6—one of the proteins in the series along the route. The cleavage of MKK6 prevents the cytokine genes from being switched on.

When the researchers made mutant macrophages with a variant of MKK6 that could not be cleaved by the anthrax toxin, these macrophages responded to lipopolysaccharide by producing cytokines even in the presence of the anthrax toxin. This suggests that developing a drug that could protect MKK6 and prevent anthrax toxin from cleaving it could help to prevent an anthrax infection from getting out of control. The anthrax bacteria would be unable to evade the normal immune response.

“While these results may not lead to a drug to cure anthrax in the next six months, the more you understand about bacteria and how they target the immune response the more options you have for developing drugs to treat the infections,” says David.

Previous work by other researchers has suggested that anthrax toxin evades the immune system by killing macrophages; however, according to David, cell death does not fully explain how anthrax bacteria evade the immune system.

“Only some types of macrophages are killed by anthrax toxins, but anthrax toxins diminish the production of cytokines in all of the macrophages we have tested,” David explains. “Also, less toxin is needed to shut off the immune response than to kill the macrophages.”

The other UCSD researchers involved with this project were Oanh Dang, a former graduate student in the David laboratory and the first author of the paper; Lorena Navarro, a former graduate student in the David laboratory and first author on two other papers that initially identified the IRF3 immune response pathway; and Keith Anderson, a technician in the David laboratory. This work was supported by a grant from the National Institutes of Health.


Media Contacts: Sherry Seethaler (858) 534-4656
Comment: Michael David (858) 822-1108

Sherry Seethaler | UC - San Diego
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/santhrax.asp

More articles from Life Sciences:

nachricht 3D technology lets us look into the distant past
20.05.2019 | Eberhard Karls Universität Tübingen

nachricht Dangerous pathogens use this sophisticated machinery to infect hosts
20.05.2019 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>