Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite’s enzyme structure helps address a public health issue

06.01.2004


By revealing the architecture of an essential enzyme in a parasite, Dartmouth researchers are helping address a public health issue.



Researchers in the laboratory of Amy Anderson, Assistant Professor of Chemistry, have unveiled the structure of an enzyme called dihydrofolate reductase-thymidylate synthase, also known as DHFR-TS, from a waterborne parasite called Cryptosporidium hominis. Knowing the chemical structure of the enzyme will help researchers design highly targeted drugs to combat the parasite, which needs this enzyme to reproduce.

"We wanted to know how DHFR-TS is assembled and how it works," says Anderson. "Then we’ll know how to disable it and kill the parasite."


Anderson, along with Robert O’Neil, a senior researcher and the lead author of the study, Ryan Lilien, an M.D./Ph.D. graduate student at Dartmouth, Bruce Donald, Professor of Computer Science, and Robert Stroud, Biochemistry and Biophysics Professor at Univ. of Calif. at San Francisco, have solved the puzzle of DHFR-TS by revealing its chemical architecture.

Their results were electronically published on October 9 in an online issue of the Journal of Biological Chemistry, and the paper appeared in the print edition of the journal on December 26, 2003. The study was also rated as "exceptional" and a "hidden jewel in microbiology" by the Faculty of 1000, a group of researchers who rate published articles in the life sciences each month.

The Centers for Disease Control and Prevention (CDC) have been watching Cryptosporidium and tracking its impact on human populations, where it spreads easily and quickly, for more than 20 years. While healthy people stricken with this parasite usually recover on their own, it can be deadly for children, elderly people and those whose immune systems are compromised, like people with HIV/AIDS or patients undergoing chemotherapy. According to the CDC Web site, Cryptosporidium is often found in public water supplies in the U.S. and cannot be easily filtered out or killed by traditional treatments like chlorine. Currently, there is no cure, and available medicine only eases the symptoms.

The study helps better define the evolution of this protozoan family that includes Plasmodium, which causes malaria, and Toxoplasma, which induces toxoplasmosis, a disease that can lead to central nervous system disorders. Knowing how this one enzyme is assembled will help researchers better understand related parasites, Anderson says.

"By using the structure of many protozoan DHFR-TS enzymes, we’ve been able to place a number of protozoa in distinct evolutionary families. This is the first time that this enzyme has been used to do this," says Anderson. "It’s an important distinction that helps classify the protozoa, and helps us design more effective drugs to combat them."

To discover DHFR-TS’s nuts and bolts, Anderson and her team used a process called "protein crystallography." The process involves taking DNA from Cryptosporidium and cloning it in the fast-growing bacteria E. coli to harvest large amounts of the target enzyme. Researchers then break E. coli open to release all of its proteins. All of the proteins are mixed with beads, or tags, which "grab" just the DHFR-TS enzyme.

Once DHFR-TS has been isolated, it’s collected in a tube, concentrated and crystallized. The crystal, which is an ordered array of enzyme molecules, is subjected to a powerful X-ray beam. Diffracted X-rays emerge and are imprinted on a film. The researchers use mathematical algorithms to interpret the X-ray data, which eventually reveal the structure of the protein.

"We can place every atom in the protein, and we can chart their interactions," says Anderson. "We learn how the protein is put together and which atoms bond to one another. It’s important to learn the structure of a protein to figure out how it works."

Researchers in Anderson’s lab also work on the same enzyme model for Toxoplasma, cousin to Cryptosporidium. The advantage, Anderson explains, is that by solving this enzyme’s structure for both Cryptosporidium and Toxoplasma, they can better predict how it will look in their other family members, like Plasmodium, the malaria bug.

Anderson’s team is also working on "structure-based drug design" to carefully design drugs to interact with the specific enzyme to influence how the enzyme will function.

"We want to prevent DHFR-TS from doing its job in the parasitic organism without stopping the human enzyme that looks similar," says Anderson. "DHFR and TS have similar functions in humans: they are critical to DNA replication."


The National Institutes of Health funded this study.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>