Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic master switch sends bacteria toward ’seafood dinner’

29.12.2003


Biologists unravel part of the mystery behind disappearance of shell material



Chitin, the Earth’s second-most abundant biological material, is a major component in the flurry of skeletal debris discarded daily by crustacean creatures in the world’s oceans. If left undisturbed, this tough insoluble material, a cousin to cellulose, would pile up on the ocean’s floor and wreak havoc with marine ecosystems. Fortunately, armies of bacteria act as chitin’s cleanup crew, and two Johns Hopkins University biologists have made a key discovery about how and when these microscopic soldiers launch their search-and-devour missions.

Writing in the Online Early Edition of "Proceedings of the National Academy of Sciences" for the week of Dec. 29, 2003, Xibing Li and Saul Roseman reported that they had found a genetic master switch that reacts to the presence of nearby chitin and sets off a biological chain reaction, causing the bacterial feast to begin. Understanding this process is important because 1011 tons of chitin (pronounced "KITE-in") are dumped annually in the oceans, largely by tiny sea animals called copepods, which shed their shells as they grow. "If nothing happened to this debris, we’d be up to our eyeballs in chitin, and the carbon and nitrogen cycle upon which marine life depends would be gone within 50 to 75 years," said Roseman, a professor of biology in the Kreiger School of Arts and Sciences at Johns Hopkins.


Researchers were puzzled about the disappearance of chitin because little of the material turned up in sediment on the ocean floors. Where did all of the chitin go? Then, about 70 years ago, two microbiologists determined that bacteria were quickly consuming the sinking shells and preserving the ecological balance. Since then, however, several mysteries have remained: How do the bacteria find these undersea meals? How do these microorganisms attach themselves to the chitin? How do they degrade the tough material and turn it into food?

During the past decade, Roseman and his colleagues have made several advances in answering these questions. In the new PNAS paper, Li and Roseman reported that they had identified and isolated the bacterial master switch that controls at least 50 and perhaps up to 300 other genes involved in the chitin sensing and consumption process. The biologists made their discovery by studying mutated versions of Vibrios, the ocean’s most common bacteria, which can cause illnesses such as cholera. The scientists separated and tested the mutant strains according to their ability to detect and break down chitin, then they analyzed the bacteria’s genetic structure to pinpoint the master switch.

"We believe," Roseman said, "that when the Vibrios are not in their feeding mode, this master switch remain in the ’minus’ or ’off’ position, locked in place by a binding protein. This keeps the cells from wasting energy by manufacturing proteins that won’t do them any good at that time."

Roseman added, "When the bacteria are starving, however, they secrete an enzyme called chitinase into the water. When chitinase touches the discarded shell material, it begins breaking down chitin, releasing a partially degraded soluble form into the water. These molecules are the signals to the bacteria that chitin is nearby. Diffusing through the ocean near the bacteria, these dissolved fragments of degraded chitin bind to the binding protein and remove the ’lock,’ allowing the master switch to move into a ’plus’ or ’on’ position."

When the switch is on, the bacteria’s genes get to work, moving the organisms along the trail of partially degraded chitin back to its source material, like a hungry traveler following the aroma of hot food to a roadside restaurant. In the ocean, the bacteria follow a gradient stream of higher and higher concentrations of dissolved degraded chitin until they reach the solid shell material. The bacteria then latch on and begin their feast.

"The master switch gene appears to be the key to this complex feeding process," said Li, an associate research scientist in the Department of Biology and lead author of the new paper. "This gives us a better understanding of the microscopic processes that keep our oceans from being overwhelmed by biological debris from sea creatures."

Phil Sneiderman | EurekAlert!
Further information:
http://www.bio.jhu.edu/
http://www.bio.jhu.edu/Directory/Faculty/Roseman/Default.html

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>