Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Running afowl: NU researchers first to measure energy used by leg muscles

05.01.2004


Researchers at Northeastern University today announced that they have demonstrated that, contrary to previous research, swinging the limbs during the act of running requires a significant fraction of energy. In contrast to the established hypothesis, which asserted that force produced when the foot is on the ground (stance-phase) is the only determinant of the energy cost of running, Northeastern researchers observed that a significant fraction energy was used to fuel muscles that move the limb while it is off the ground (swing-phase).



In the study, the researchers estimated energy use by measuring blood flow to the hind leg muscles of guinea fowl in an effort to better explain the energetics of walking and running. In contrast to C. Richard Taylor’s “force hypothesis,” which suggests that swing-phase costs were low enough to be ignored, the researchers were able to demonstrate that the swing-phase muscles, in fact, consume 26 percent of the energy used by the limbs when running while the stance-phase muscles consume the remaining 74 percent of the energy. These findings represent the first time anyone has been able to look directly at the muscles during running and suggest that the force hypothesis needs modification. The swinging motion backwards is,indeed, the researchers assert, expensive energy-wise. Results of the study were published in the January 2nd issue of Science.

“The pioneering effect of this research is that by looking directly at blood flow to all of the individual muscles during running we were able to establish more directly the consumption of energy during the swing-phase,” said Marsh. “Taylor’s force hypothesis tried to unify the mechanics and energetics of running and explain the effects of body size and locomotor speed on the energy cost of running. Not everyone was necessarily convinced of all of the details of this hypothesis, but no one had been able to prove otherwise because most research on running has been based externally observable phenomena. By being able to estimate the energy use by the individual muscles, we were able to account to for energy consumption during swing-phase. Our work maintains Taylor’s emphasis on using energetics to understand terrestrial locomotion, but our findings suggest the force hypothesis will need to be modified to account for a more detailed partitioning of the energetics among muscles used during running.”


Senior author of the article titled, “Partitioning the Energetic of Walking and Running: Swinging the Limbs is Expensive,” is Richard Marsh from the department of biology at Northeastern University. Contributors to the article include NU researchers Jennifer Carr, Havalee Henry and Cindy Buchanan and David Ellerby from the University of Leeds in England.

This ability to demonstrate energy consumption in the swing-phase of running is significant because it provides a technique to answer other questions about the energetics of running, which could lead to a more in-depth understanding of which specific muscles are used to support weight and how changes in energy use are caused by differences in body size and speed. The report’s findings may potentially improve our current knowledge of rehabilitative medicine.

“The potential application of these findings are many,” said Marsh. “Future research will allow us to connect the mechanical functions of individual muscles with their energy use. This detailed information will be useful in models that integrate the energetics and mechanics of running. Because running birds are the best bipedal runners other than humans, our research should provide many valuable clues to understanding human locomotion.”

Northeastern University, located in the heart of Boston, Massachusetts, is a world leader in cooperative education and recognized for its expert faculty and first-rate academic and research facilities. Through co-op, Northeastern undergraduates alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, giving them nearly two years of professional experience upon graduation. The majority of Northeastern graduates receive a job offer from a co-op employer. Cited for excellence two years running by U.S. News & World Report, Northeastern was named a top college in the northeast by the Princeton Review 2003/04. In addition, Northeastern’s career services was awarded top honors by Kaplan Newsweek’s “Unofficial Insiders Guide to the 320 Most Interesting Colleges and Universities,” 2003 edition. For more information, please visit www.northeastern.edu.

Steve Sylven | Northeastern University
Further information:
http://www.nupr.neu.edu/01-04/marsh_science.html
http://www.northeastern.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>