Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yesterday, today and tomorrow: Mount Sinai researchers are making sense of episodic memory

18.12.2003


Many of our actions are guided by past experiences combined with insight into the future. A major mystery of biology involves understanding how brain cells can create a representation that extends backward and forward through time. A new study conducted by researchers at Mount Sinai School of Medicine published in the December 18th issue of Neuron begins to unravel the brain activity that underlies concurrent processing of the recent past, the present and the imminent future.



Memories that are organized by time and context are known as episodic memory. Dr. Matthew L. Shapiro, Associate Professor of Neurobiology at Mount Sinai School of Medicine and leader of the study offers the following example. "Imagine driving to work, parking your car, and taking an elevator to your office. During the day you may take the elevator several times without thinking of your car. Only when the end of the day arrives and you descend in the elevator to go home do you remember where your car is parked. In the present moment in the elevator, the past guides your future action." To examine the brain processes involved in such episodic memories, Drs. Shapiro and Ferbinteanu examined cellular activity within the brain while rats searched for food in a maze where the starting and ending point was varied.

The researchers examined activity in the hippocampus, a brain region that is key for memory. The hippocampus contains cells, called place cells, which become more active in response to a particular spatial location. "We found that the activity of the place cells showed something very interesting while the rats performed the task. Some cells signaled location alone but others were additionally sensitive to recent or impending events," explains Dr. Ferbinteanu. "These cells maintained spatial selectivity, but this activity depended upon where the animal had just been or where it intended to go." Therefore, the hippocampus can support episodic memory by creating patterns of cellular activity for events within a temporal context.


"The pattern of cell firing suggests a model of how the hippocampus helps form episodic memories," suggests Dr. Shapiro. "When you park your car, hippocampal neurons fire in a pattern that includes location. When the time has come to go home, the goal in the elevator is to find the car. This goal activates cells in the hippocampus that did not fire during prior trips in the elevator that day, but form a new pattern that perhaps includes the visual and verbal images that guide recollection and future action." Further studies are needed to determine how the brain activates and decodes the signals that simultaneously integrate the past, present, and future.

Debra Kaplan | EurekAlert!
Further information:
http://www.mountsinai.org/

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>