Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of international project on cattle genome

16.12.2003


A US$53-million international project to sequence the cattle genome, involving CSIRO, was launched today (1pm, Friday, 12 December US, 5am Saturday, 13 December AEST) in Washington, United States.



The joint sequencing effort is led by the US National Human Genome Research Institute (NHGRI), which is part of the National Institutes of Health (NIH), and also involves United States Department of Agriculture; the State of Texas; Genome Canada; and Agritech Investments Ltd, Dairy Insight Inc. and AgResearch Ltd, all of New Zealand.

"We are extremely proud to be participating in this research project," says US Agriculture Secretary, Ann Veneman. "The results of the sequencing promise to benefit human health by contributing to its knowledge, as well as having an impact on the dairy and beef industries by advancing the health and disease management of beef and dairy cattle, and improving the nutritional value of beef and dairy products."


CSIRO Livestock Industries’ Chief Shaun Coffey announced in July that CSIRO is contributing AU$1.5 million to the Bovine Genome Sequencing Project.

"CSIRO’s involvement places the Australian livestock industry at the forefront of international research and provides strong prospects for market advantage," he says.

"Currently the gross value of livestock-derived products in Australia is approximately Aus$15 billion per annum and the greater part of this comes from cattle and sheep products. It is a figure anticipated to increase significantly in the future as a result of sequencing of the bovine genome," he says.

Expected benefits include the ability to: identify genes that control growth efficiency, muscle development and milk composition; and, to breed disease resistant cattle and sheep.

According to the leader of the Australia-based research team, CSIRO’s Ross Tellam, information gained about the sequence will be made freely available to all interested researchers.

"The ’intellectual property’ rights will be derived from how we use the sequence, not the sequence itself," Dr Tellam says.

"Australia is in a good position to capitalise on the information that will be generated from sequencing the bovine genome as we have the necessary infrastructure and expertise to maximise the gains from this sequencing," he says.

Scheduled for completion by the end of 2005, the project is expected to drive the creation of innovative products and solutions to current production problems within the livestock industry.

The bovine genome is similar in size to the genomes of humans and other mammals, with an estimated size of three billion base pairs. Besides its potential for improving dairy and meat products and enhancing food safety, adding the genomic sequence of the cow (Bos taurus) to the growing list of sequenced animal genomes will help researchers learn more about the human genome.

NHGRI is one of the 27 institutes and centres at NIH, an agency of the Department of Health and Human Services. Additional information about NHGRI can be found at www.genome.gov [external link - new window]

More information:
Ross Tellam, CSIRO, mobile: 0409 775 044
Shaun Coffey, CSIRO, mobile: 0419 788 839

Media assistance:
Emma Homes, CSIRO, mobile: 0409 236 152

Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=prcattlegenome

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>