Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of international project on cattle genome

16.12.2003


A US$53-million international project to sequence the cattle genome, involving CSIRO, was launched today (1pm, Friday, 12 December US, 5am Saturday, 13 December AEST) in Washington, United States.



The joint sequencing effort is led by the US National Human Genome Research Institute (NHGRI), which is part of the National Institutes of Health (NIH), and also involves United States Department of Agriculture; the State of Texas; Genome Canada; and Agritech Investments Ltd, Dairy Insight Inc. and AgResearch Ltd, all of New Zealand.

"We are extremely proud to be participating in this research project," says US Agriculture Secretary, Ann Veneman. "The results of the sequencing promise to benefit human health by contributing to its knowledge, as well as having an impact on the dairy and beef industries by advancing the health and disease management of beef and dairy cattle, and improving the nutritional value of beef and dairy products."


CSIRO Livestock Industries’ Chief Shaun Coffey announced in July that CSIRO is contributing AU$1.5 million to the Bovine Genome Sequencing Project.

"CSIRO’s involvement places the Australian livestock industry at the forefront of international research and provides strong prospects for market advantage," he says.

"Currently the gross value of livestock-derived products in Australia is approximately Aus$15 billion per annum and the greater part of this comes from cattle and sheep products. It is a figure anticipated to increase significantly in the future as a result of sequencing of the bovine genome," he says.

Expected benefits include the ability to: identify genes that control growth efficiency, muscle development and milk composition; and, to breed disease resistant cattle and sheep.

According to the leader of the Australia-based research team, CSIRO’s Ross Tellam, information gained about the sequence will be made freely available to all interested researchers.

"The ’intellectual property’ rights will be derived from how we use the sequence, not the sequence itself," Dr Tellam says.

"Australia is in a good position to capitalise on the information that will be generated from sequencing the bovine genome as we have the necessary infrastructure and expertise to maximise the gains from this sequencing," he says.

Scheduled for completion by the end of 2005, the project is expected to drive the creation of innovative products and solutions to current production problems within the livestock industry.

The bovine genome is similar in size to the genomes of humans and other mammals, with an estimated size of three billion base pairs. Besides its potential for improving dairy and meat products and enhancing food safety, adding the genomic sequence of the cow (Bos taurus) to the growing list of sequenced animal genomes will help researchers learn more about the human genome.

NHGRI is one of the 27 institutes and centres at NIH, an agency of the Department of Health and Human Services. Additional information about NHGRI can be found at www.genome.gov [external link - new window]

More information:
Ross Tellam, CSIRO, mobile: 0409 775 044
Shaun Coffey, CSIRO, mobile: 0419 788 839

Media assistance:
Emma Homes, CSIRO, mobile: 0409 236 152

Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=prcattlegenome

More articles from Life Sciences:

nachricht Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria
18.02.2020 | Heinrich-Heine-Universität Düsseldorf

nachricht Blood and sweat: Wearable medical sensors will get major sensitivity boost
18.02.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>