Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers probe how microbes speed up acid production at mining sites

12.12.2003


Microbes are everywhere, but when they are in mined soils, they react with the mineral pyrite to speed up acidification of mine run-off water. Scientists have been trying to understand the chemistry behind this process that eventually leads to widespread acidification of water bodies and deposition of heavy metals. What a new study has found seems to defy the laws of chemistry: microbes react with the pyrite surface, coating it with chemicals that would be expected to hinder further reactions. Despite the formation of such coatings, however, microbe-mediated reactions occur tens of thousands of times faster than when no microbes are present.



’’That’s a puzzle,’’ said Alfred Spormann, a co-principal investigator on the study. ’’This changed surface chemistry should slow down the microbial oxidation but it doesn’t.’’

The collaborative study was led by co-principal investigators Scott Fendorf, Gordon Brown and Spormann at Stanford. Dartmouth Assistant Professor Benjamin Bostick, Fendorf’s former doctoral student who coordinated the research effort, will present the group’s findings Thursday, Dec. 11 at this year’s San Francisco meeting of the American Geophysical Union (AGU). The AGU is an international scientific society with more than 35,000 members dedicated to advancing the understanding of Earth and its environment.


In mines, oxygen from the air initiates chemical reactions with pyrite, also known as fool’s gold. Microbes subsequently react with the pyrite in cyclic processes that result in the rapid production of large amounts of sulfuric acid. The research team wanted to understand how the activity of the microorganisms controls the chemistry on mineral surfaces, and how that chemistry, in turn, controls the activity of the microorganisms. Specifically, they wanted to find out what kinds of iron species and precipitates can be found on microbe-treated pyrite surfaces.

The researchers grew the bacteria Thiobacillus ferrooxidans and Thiobacillus thiooxidans, forcing them to ’’eat’’ iron or sulfur, the elements that make up pyrite. They examined the products of metabolism using surface-sensitive photoelectron spectroscopy and X-ray absorption spectroscopy. The results give a molecular view of how microbes change the form of the mineral. The bacteria produced surface coatings made up of iron sulfate and the iron oxide goethite. Also, different metabolism products formed when both types of bacteria were studied together compared to when only one type was used. The amount of oxidation produced by the mixed species was not additive compared to oxidation by individual species, however. ’’The projects show that there is a fundamental difference between how one organism carries out a process and how a group does so,’’ said Bostick.

This study is a continuation of a pioneering molecular-level study by the same team, looking at how heavy metal contaminants partition between a biofilm and a metal surface. The researchers found then that surface type and metal concentration affect the distribution of the metal and the types of products formed.

The researchers will continue to experimentally reproduce and study the complex natural system of microbes and minerals, starting with simple systems and building complexity by sequentially adding more and different microorganisms.

The results may provide insight into other problems, such as tooth decay and metal-pipe corrosion, that arise from the interaction between microbes and the surfaces on which they reside.

Czerne M. Reid | EurekAlert!
Further information:
http://www.stanford.edu/news/
http://www.agu.org/meetings/fm03/
http://www.stanford.edu/dept/news/html/releases.html

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>