Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers probe how microbes speed up acid production at mining sites

12.12.2003


Microbes are everywhere, but when they are in mined soils, they react with the mineral pyrite to speed up acidification of mine run-off water. Scientists have been trying to understand the chemistry behind this process that eventually leads to widespread acidification of water bodies and deposition of heavy metals. What a new study has found seems to defy the laws of chemistry: microbes react with the pyrite surface, coating it with chemicals that would be expected to hinder further reactions. Despite the formation of such coatings, however, microbe-mediated reactions occur tens of thousands of times faster than when no microbes are present.



’’That’s a puzzle,’’ said Alfred Spormann, a co-principal investigator on the study. ’’This changed surface chemistry should slow down the microbial oxidation but it doesn’t.’’

The collaborative study was led by co-principal investigators Scott Fendorf, Gordon Brown and Spormann at Stanford. Dartmouth Assistant Professor Benjamin Bostick, Fendorf’s former doctoral student who coordinated the research effort, will present the group’s findings Thursday, Dec. 11 at this year’s San Francisco meeting of the American Geophysical Union (AGU). The AGU is an international scientific society with more than 35,000 members dedicated to advancing the understanding of Earth and its environment.


In mines, oxygen from the air initiates chemical reactions with pyrite, also known as fool’s gold. Microbes subsequently react with the pyrite in cyclic processes that result in the rapid production of large amounts of sulfuric acid. The research team wanted to understand how the activity of the microorganisms controls the chemistry on mineral surfaces, and how that chemistry, in turn, controls the activity of the microorganisms. Specifically, they wanted to find out what kinds of iron species and precipitates can be found on microbe-treated pyrite surfaces.

The researchers grew the bacteria Thiobacillus ferrooxidans and Thiobacillus thiooxidans, forcing them to ’’eat’’ iron or sulfur, the elements that make up pyrite. They examined the products of metabolism using surface-sensitive photoelectron spectroscopy and X-ray absorption spectroscopy. The results give a molecular view of how microbes change the form of the mineral. The bacteria produced surface coatings made up of iron sulfate and the iron oxide goethite. Also, different metabolism products formed when both types of bacteria were studied together compared to when only one type was used. The amount of oxidation produced by the mixed species was not additive compared to oxidation by individual species, however. ’’The projects show that there is a fundamental difference between how one organism carries out a process and how a group does so,’’ said Bostick.

This study is a continuation of a pioneering molecular-level study by the same team, looking at how heavy metal contaminants partition between a biofilm and a metal surface. The researchers found then that surface type and metal concentration affect the distribution of the metal and the types of products formed.

The researchers will continue to experimentally reproduce and study the complex natural system of microbes and minerals, starting with simple systems and building complexity by sequentially adding more and different microorganisms.

The results may provide insight into other problems, such as tooth decay and metal-pipe corrosion, that arise from the interaction between microbes and the surfaces on which they reside.

Czerne M. Reid | EurekAlert!
Further information:
http://www.stanford.edu/news/
http://www.agu.org/meetings/fm03/
http://www.stanford.edu/dept/news/html/releases.html

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Lying in a foreign language is easier

19.07.2018 | Social Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>