Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers probe how microbes speed up acid production at mining sites

12.12.2003


Microbes are everywhere, but when they are in mined soils, they react with the mineral pyrite to speed up acidification of mine run-off water. Scientists have been trying to understand the chemistry behind this process that eventually leads to widespread acidification of water bodies and deposition of heavy metals. What a new study has found seems to defy the laws of chemistry: microbes react with the pyrite surface, coating it with chemicals that would be expected to hinder further reactions. Despite the formation of such coatings, however, microbe-mediated reactions occur tens of thousands of times faster than when no microbes are present.



’’That’s a puzzle,’’ said Alfred Spormann, a co-principal investigator on the study. ’’This changed surface chemistry should slow down the microbial oxidation but it doesn’t.’’

The collaborative study was led by co-principal investigators Scott Fendorf, Gordon Brown and Spormann at Stanford. Dartmouth Assistant Professor Benjamin Bostick, Fendorf’s former doctoral student who coordinated the research effort, will present the group’s findings Thursday, Dec. 11 at this year’s San Francisco meeting of the American Geophysical Union (AGU). The AGU is an international scientific society with more than 35,000 members dedicated to advancing the understanding of Earth and its environment.


In mines, oxygen from the air initiates chemical reactions with pyrite, also known as fool’s gold. Microbes subsequently react with the pyrite in cyclic processes that result in the rapid production of large amounts of sulfuric acid. The research team wanted to understand how the activity of the microorganisms controls the chemistry on mineral surfaces, and how that chemistry, in turn, controls the activity of the microorganisms. Specifically, they wanted to find out what kinds of iron species and precipitates can be found on microbe-treated pyrite surfaces.

The researchers grew the bacteria Thiobacillus ferrooxidans and Thiobacillus thiooxidans, forcing them to ’’eat’’ iron or sulfur, the elements that make up pyrite. They examined the products of metabolism using surface-sensitive photoelectron spectroscopy and X-ray absorption spectroscopy. The results give a molecular view of how microbes change the form of the mineral. The bacteria produced surface coatings made up of iron sulfate and the iron oxide goethite. Also, different metabolism products formed when both types of bacteria were studied together compared to when only one type was used. The amount of oxidation produced by the mixed species was not additive compared to oxidation by individual species, however. ’’The projects show that there is a fundamental difference between how one organism carries out a process and how a group does so,’’ said Bostick.

This study is a continuation of a pioneering molecular-level study by the same team, looking at how heavy metal contaminants partition between a biofilm and a metal surface. The researchers found then that surface type and metal concentration affect the distribution of the metal and the types of products formed.

The researchers will continue to experimentally reproduce and study the complex natural system of microbes and minerals, starting with simple systems and building complexity by sequentially adding more and different microorganisms.

The results may provide insight into other problems, such as tooth decay and metal-pipe corrosion, that arise from the interaction between microbes and the surfaces on which they reside.

Czerne M. Reid | EurekAlert!
Further information:
http://www.stanford.edu/news/
http://www.agu.org/meetings/fm03/
http://www.stanford.edu/dept/news/html/releases.html

More articles from Life Sciences:

nachricht Dead cells disrupt how immune cells respond to wounds and patrol for infection
21.05.2019 | University of Sheffield

nachricht New study shows: Tropical corals reflect ocean acidification
21.05.2019 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers

22.05.2019 | Power and Electrical Engineering

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>