Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find mechanism bacteria use to target specific chemical contaminants

09.12.2003


New insight into the molecular-level interactions between bacteria and minerals may some day help scientists design bacteria with the express purpose of cleaning up toxic waste.



Hazardous waste experts know that certain bacteria can essentially eat toxic waste, reducing it to less noxious substances. But until now they didn’t know what mechanisms allowed these bacteria to devour chemicals.

A new study by Ohio State and Virginia Tech universities showed how a particular bacteria uses iron oxide, or rust, to breathe. The researchers found that key changes in the expression of genes in Shewanella oneidensis enable the microbe to recognize and bind specifically to iron oxides.


This finding could help researchers manipulate the bacteria to make it more effective in cleaning up petroleum products at toxic waste sites.

"In some situations, S. oneidensis is capable of using organic contaminants similar to oil as a source of energy,” said Steven Lower, a study co-author and an assistant professor of geological sciences at Ohio State. "Petroleum products are one of the main chemicals found in toxic waste dumps.

“Also, there’s little to no oxygen in these underground sites, so the bacteria have to adapt to anaerobic conditions,” said Lower, who is also a professor in the school of natural resources. This essentially means that in order for bacteria to grow and degrade an organic contaminate, it must be able to ‘breathe’ on something other than oxygen.”

The researchers hope to one day be able to tailor bacteria so it could target a specific contaminant.

Lower pointed out that one problem with using microbes to help clean up contaminated sites is getting the bacteria to the site and then ensuring that it remains in place.

Knowing which gene the bacteria express in an anaerobic environment may enable researchers to genetically manipulate the microbes so they prefer iron oxides only in the presence of oil and related waste products.

Lower conducted the work with Brian Lower and Michael Hochella, both with the department of geosciences at Virginia Tech. The results were presented December 8 at the fall meeting of the American Geophysical Union in San Francisco.

The researchers used a relatively new technique called biological force microscopy to measure the molecular forces between S. oneidensis and a crystal of iron oxide. Force microscopy lets scientists measure the minutest interactions between the surfaces of two substances. Such microscopes use an ultra-sensitive probe that can detect attractive and repulsive forces.

The researchers placed a small amount of S. oneidensis on the probe, which also acts as a cantilever, and a sample of iron oxide near the probe. A beam of laser light was then reflected off of the probe to determine if the bacteria-covered cantilever was bending toward or away from the iron oxide sample, and by how much.

“In principle it’s a very simple measurement that tells us whether or not a bacterium is attracted to an inorganic substance, and also gives us a precise measurement of that attraction," Lower said.

He and his colleagues also analyzed gene expression patterns in S. oneidensis to learn if different genes were expressed depending on what the bacteria uses to breathe.

Indeed, the researchers found that S. oneidensis produces two specific proteins under anaerobic conditions, which allow the microbes to bind to and breathe in, and therefore reduce, iron contained in the structure of a solid mineral.

“We’ve known for decades that this bacteria can use dissolved iron to breathe, but until now we really didn’t know how they could do this in nature, where most of the iron is embedded in the crystal structure of a solid mineral," Lower said. "This interaction is probably billions of years old, and may represent one of the first globally significant mechanisms for oxidizing organic matter to carbon dioxide."

This work was supported by grants from the U.S. Department of Energy and the National Science Foundation.


Contact: Steven Lower, (614) 292 1571; Lower.9@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Steven Lower | Ohio State University
Further information:
http://researchnews.osu.edu/archive/shewagu.htm

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>