Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Area Identified That Weighs Rewards

05.12.2003


Michael L. Platt, MD


By studying how monkeys choose to look at lighted targets for juice rewards, neurobiologists have identified a still-mysterious region of the cerebral cortex as an area that judges the value of rewards, and adjusts that value as circumstances change.

The finding adds a significant piece to the puzzle of how the brain is wired to make judgments, perhaps even moral judgments, about the outside world, said the researchers. The findings may also have implications for understanding a number of neurological disorders, said the scientists. Damage to the area the researchers studied -- called the posterior cingulate cortex -- has been linked to cognitive decline in Alzheimer’s disease, as well as pathologies of stroke, obsessive-compulsive disorder, schizophrenia and spatial disorientation.

The researchers, led by Michael Platt, Ph.D., Duke University Medical Center assistant professor of neurobiology, published their findings in the Dec. 4, 2003, issue of the journal Neuron. Other authors on the paper were joint lead authors Allison McCoy of Duke and Justin Crowley, Ph.D., of Carnegie Mellon University; and Golnaz Haghighian and Heather Dean of Duke.



"Even though the posterior cingulate cortex is a large structure in the brain that is easily identifiable in all mammals, including humans, almost nothing was known about what it might do," said Platt. "Anatomical studies show that it is kind of a nexus of brain circuitry involved in motivational or emotional inputs from the limbic system. And it is strongly connected to structures involved in making decisions and generating responses. So, we theorized that it seemed to be important for somehow putting together the costs and benefits associated with different options in an animal’s environment."

The researchers chose to study the role of the posterior cingulate cortex in making decisions about eye movement, because the visual system and the neural control of the eye muscles is very well understood, said Platt. So, they devised an experimental procedure in which monkeys would be asked to shift their gaze to one of a vast array of lighted diodes, in return for a fruit juice reward. At the same time, the researchers would monitor electrical activity in the neurons of the posterior cingulate cortex.

"We were trying to find those circuits that seem to associate motivational outcomes or emotional outcomes with the actions or the stimuli that produced them," said Platt. "So, once we had mapped the regions of the posterior cingulate cortex that responded to specific regions of visual space, we wanted to find out whether these neurons were representing how valuable movements to that region of space were.

"We manipulated how much fruit juice a monkey got for making particular eye movements, and we found a direct linear relationship between how strongly these neurons fired and the amount of fruit juice that was delivered," said Platt.

"And what really distinguishes the response of these neurons in the posterior cingulate cortex from other brain regions that respond to rewards is that these neurons not only respond just after the monkey makes an eye movement, but after the reward as well," he emphasized. "So, we’re arguing that the first response represents a prediction of what the monkey expects the outcome to be, and the second response reflects what the outcome really was. And these are exactly the kinds of signals you would expect if the brain region was functioning to update and learn the value of different options."

Such a brain region would be determining what neurobiologists term a "reward-prediction" error -- a comparison of a predicted with an actual reward. To demonstrate the cingulate cortex was doing just this, the researchers performed trials in which they did not give the monkey a juice reward on every trial.

"When the monkey expected a reward and didn’t get it, we found that these neurons would fire very strongly following the time when the monkey would normally expect a reward," Platt said. "So, we believe that firing meant that the neurons were registering a large reward-prediction error, and that this error would influence both neuronal activity and looking behavior on the next trial. Sure enough, it did," he said.

"And so, the posterior cingulate cortex seems to be -- at least, for visuospatial orienting -- putting together these signals of reward-prediction error with looking to the part of space that was connected with that reward," he concluded.

According to Platt, the latest findings could yield new insight into the function of the posterior cingulate cortex in neurological disorders. Since the region is known to be affected in Alzheimer’s disease, obsessive-compulsive disorder and schizophrenia, further study could reveal underlying mechanisms for pathologies in this disease, he said.

"It has been observed that damage to this area can cause disturbances in spatial perception," Platt said. "Such damage can sometimes cause the kind of ’neglect’ of a visual area that you see in stroke patients who don’t perceive things on one side or the other of their visual field.

"One hypothesis that this research raises is that what’s happening in such cases is that there’s no motivational significance or emotional significance to that part of the visual world. It has become meaningless to the patient, because the posterior cingulate cortex is imbuing that part of the visual world with significance. Similarly, an inability to learn the motivational significance of new locations may be responsible for patients with degeneration of posterior cingulate cortex getting lost in new environments."

Also, said Platt, although he and his colleagues used eye movement as their experimental indicator of response, the posterior cingulate cortex has been linked to control of other muscle movements, suggesting that it plays a broader role in decision-making about actions.

Further studies will aim at understanding the neural machinery of the posterior cingulate cortex in greater detail, said Platt. For example, by precisely stimulating neurons in the region at different points in the judgment process, the researchers hope to determine whether they can affect the ability of a monkey to choose the right eye movements to receive a reward.

Also, he said, the researchers will seek to expand their understanding of the brain region, to determine whether it is involved in broader moral judgments and social reasoning—a possibility suggested by recent neuroimaging studies in humans.

"We’ll have to be very clever in these experiments," said Platt. "After all, what is moral judgment for a monkey? So, we’ll have to develop a way to measure whether a monkey perceives another violating a social norm, for example, and determine whether the posterior cingulate cortex is involved in that perception.

Dennis Meredith | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7266

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>