Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal early steps in clone development

26.11.2003


Despite widely publicized reports about the sheep, Dolly and Polly, cloning is still not considered successful in the scientific community. Only two percent of clones succeed and they are sometimes unhealthy. To understand exactly where cloning goes wrong, researchers at Temple University School of Medicine (TUSM) examined and compared the earliest stages of development in normal embryos and cloned embryos.



"First, we mapped out some of the early steps an egg and sperm take to become an embryo," said Keith Latham, PhD, associate professor of biochemistry at TUSM and lead author of the study. "Next, we examined how well clones were able to replicate these early steps. We discovered that at this stage of development, 100 percent of clones replicated the process entirely. This tells us that the problems must occur later in the development process."

The study, "Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice," will appear in an upcoming issue of Developmental Biology. The study is part of a larger program, directed by Latham and funded by two National Institutes of Health (NIH) grants, that is examining how eggs communicate with chromosomes.


"When a sperm and egg unite, each brings a set of chromosomes to the table. Molecules in the egg turn the two sets of chromosomes, known as genomes, into an embryo. During cloning, we ask the egg to do the same thing but with different starting materials," said Latham. "Instead of a sperm, the egg has to work with an adult cell from the organism that is being cloned. We used to think that during cloning, the egg integrated the adult cell as easily as it does the sperm.

"However, once the first few steps of development occur, the rest of the process is actually quite slow and incomplete. Cloned embryos bear characteristics of both an embryo and an adult cell. They’re not very happy and healthy."

Latham suspects part of the problem is the culture used to house the cells in the laboratory. "We have cultures that work very well for embryos and cultures that work very well for adult cells. However, we still need to find the optimal culture media for cloned embryos. Once we find out what that is, cloning will probably be more successful," said Latham.

"Understanding the early development process could help us increase success rates for cloning and its potential applications, such as producing valuable farm animals and preserving endangered species," said Latham.

"As remarkable as it is to see clones born, cloning is really just a simple but striking demonstration of the truly remarkable processes that are at the root of each new life. We take this for granted, because it happens so readily, and yet when one gains an appreciation for the many complex things that must occur in order for each of us to be in the world, it really sinks in just how terrific the process is," exclaimed Latham.

Temple researchers collaborated with researchers at the University of Utah Health Sciences Center and Peregrine pharmaceuticals on the project.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu/

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
25.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>