Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major mutations, not many small changes, might lead way to new species

13.11.2003


Hummingbirds visited nearly 70 times more often after scientists altered the color of a kind of monkeyflower from pink – beloved by bees but virtually ignored by hummingbirds – to a hummer-attractive yellow-orange.



Researchers writing in the Nov. 13 issue of Nature say perhaps it was a major change or two, such as petal color, that first forged the fork in the evolutionary road that led to today’s species of monkeyflowers that are attractive to and pollinated by hummingbirds and separate species of monkeyflowers that are pollinated by bees.

The color change is the result, it appears, of mutation in a single gene, according to H.D. "Toby" Bradshaw, a professor of biology at the University of Washington and lead author of the Nature piece. He says the resulting quick change in pollinator preferences adds to the debate over whether new species arise according to the classic, 150-year-old Darwin theory of evolution that says it may take a hundred small genetic changes, each with mounting effect, or might speciation be kick-started by a few mutations that cause large effects.


"It could be that the first adaptations require a few big changes, sort of like taking a watch that has stopped ticking and banging it a few times before making the small tweaks to restore its optimal performance," says Douglas Schemske, professor of plant biology at Michigan State University and co-author of the letter in Nature.

There are 123 species of monkeyflowers, a wildflower found around the world. Mimulus lewisii appeals to bees with forward-thrusting petals that serve as a landing platform and yellow nectar guides that contrast with the pale pink flowers. The closely related M. cardinalis, on the other hand, has a deep, tubular shape that excludes bees but is easily probed by the slender beaks of hummingbirds, and has red or deep yellow-orange petals, colors bees can’t see.

These and other differences make the species of monkeyflowers distinct and nearly eliminates crossbreeding in the wild.

In an experiment funded by the National Science Foundation, the researchers changed the region of a chromosome, thought to be a single gene, that affects the concentration of yellow pigment in petals of monkeyflowers. M. lewisii, the normal favorite of bees, responded with petals of yellow-orange instead of the usual pink. Although its other features – flower size, petal shape and amount of nectar – were unchanged, the resulting flowers were suddenly being visited 68 times more often by hummingbirds. The flowers were actually shunned by bees, probably because orange is in the spectrum of light they don’t see.

In another alteration as part of the experiment, M. cardinalis, usually favored by hummingbirds, responded with petals that were dark pink rather than deep red. These flowers appealed equally to hummingbirds and bees.

Bradshaw and Schemske say altering just the genetic region responsible for the concentration of yellow pigment is much like what might happen during a naturally occurring mutation.

"Perhaps a single mutation having to do with color changed the pollinator milieu back when there was only a single species," Bradshaw says. That one big evolutionary step may then have been followed by many smaller steps triggered by pollinator preferences that led ultimately to different species.

Monkeyflowers, so-called because someone once imagined the face of a monkey in the markings on the blossoms, have been used by researchers interested in ecology and evolution for more than 50 years. The plants readily reveal the effects of crossbreeding and can be planted in native settings so they are useful for experiments.

"A unique aspect of out work is that it combines ecological observations with molecular genetic techniques to elucidate the process of adaptation in natural populations," Schemske says.

Schemske, Bradshaw and researchers at Duke University, Clemson University, University of North Carolina and University of Montana recently received $5 million for the study of monkeyflowers and questions of how species arise. The money is part of the new Frontiers in Integrative Biological Research program .



For more information
Bradshaw, (206) 954-4392, toby@u.washington.edu (On Veterans Day, it will be best to call rather than use e-mail)
Schemske, (517) 432-5289, schem@msu.edu
Michigan State University media contact: Tom Oswald, (517) 432-0920, oswald@msu.edu
NSF’s Frontiers in Integrative Biological Research explores biology’s mysteries:
http://www.nsf.gov/od/lpa/news/03/pr03106.htm

Sandra Hines | EurekAlert!
Further information:
http://www.nsf.gov/od/lpa/news/03/pr03106.htm

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>