Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify enzyme that may turn fleeting experience into lasting memory

12.11.2003


The enzyme that can help turn a one-time experience into a long-term memory has been identified in mice, researchers at Wake Forest University Baptist Medical Center reported today at the annual meeting of the Society for Neuroscience in New Orleans. Ashok Hegde, Ph.D., of Wake Forest described the researchers’ work and proposed a theory for how lasting memories are formed, a process that involves the enzyme known as protein kinase C.



"One of the hallmarks of memories that last very long is a close association with emotion," Hegde said in an interview. Hegde and colleagues studied female mice, which, with only one exposure at mating, can later recognize their partner’s scent. After mating, a female mouse exposed to the scent of a strange male will not continue her pregnancy. But a female exposed to her partner’s scent even a month after mating will continue her pregnancy. This suggests that the female somehow memorized her partner’s scent during the process of mating.

"The good thing about this model," Hegde said, "is that it’s simple and robust. The memory is unambiguous, and it forms after just one event." In Hegde’s model, formation of the lasting memory in the female mouse requires that olfactory (smell) information about her partner coincide with sensory information about the mating. The information is carried by separate pathways, one involving the neurotransmitter glutamate, the other norepinephrine.


Norepinephrine, which is closely related to adrenaline, is a chemical released in the brain during emotional or exciting situations. If it does play a role in humans’ being able to vividly remember details of an experience from decades ago--where people were when they heard news of President Kennedy’s assassination, for example--the question for researches is how.

"There is a threshold for memory storage," Hegde said. "The brain has to decide what is important for long-term storage. We’re trying to understand how norepinephrine leads to strong-memory formation."

When a memory is formed, structural changes take place at synapses, the connections between nerve cells. Proteins synthesized by genes in the nerve cells cause these changes. Generally speaking, the stronger the connections among synapses, the more lasting the memory. Hegde and his colleagues--Jian Mu, M.D., Dwayne W. Godwin, Ph.D., and Chenghai Dong, M.D., Ph.D., all of the Department of Neurobiology and Anatomy--collected data from the mouse brain to suggest how norepinephrine serves as a "gatekeeper" to allow memories to form under certain circumstances.

Their research suggests that the enzyme protein kinase C plays a fundamental role in turning the female’s experience of mating into a long-term memory of her partner’s scent. Protein kinase C activates genes to express certain proteins. How protein kinase C is linked to gene expression in nerve cells is the subject of a related study by Cristian Skinner, a graduate student in the Hegde lab.

"We’ve known for a long time that you need gene expression to launch protein synthesis, which is necessary to change the synaptic connections that underlie memory," Hegde said. "This could help look at how genes work to form new connections among synapses."

In collaboration with Josyf Mychaleckyj, D.Phil., of the Wake Forest Center for Human Genomics, Hegde said, the human and mouse genomes--both of which have been completely sequenced--are systematically being searched discover genes that have a critical role in long-term memory. Also, Hegde and his assistant, Thuy Smith, are using gene chips that can screen thousands of genes at the same time to identify the "memory" genes in mice.

"The details might be different in mice and people," Hegde said, "but we think the mechanism will be the same."

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>