Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stepping Way Out: Scripps Scientists Watch Clam Feet Elongate Far from the Shell

10.11.2003


Scientists at Scripps Institution of Oceanography at the University of California, San Diego, have documented what they are calling possibly the most extreme case of animal structure elongation documented to date.




In a paper published in the November 6 issue of the journal Nature, Suzanne Dufour and Horst Felbeck show that a clam from a certain species can extend its foot (clams have only one foot) up to 30 times the length of its shell to reach chemicals in marine sediment necessary for the survival of their symbionts, marine bacteria that live within the clams.

To test the extension process, Dufour set up aquarium tanks with sediment to investigate how clams that require chemicals differ from those that do not. Clams that live in a symbiotic relationship with marine bacteria act as hosts that retrieve chemicals, typically sulfide or methane.


The Nature paper explains that the symbiotic clams in the Thyasiridae family elongate their feet to burrow extensive mines in an effort to reach the sulfide. X-rays taken through Dufour’s plexiglass tanks over several weeks revealed long, branch-like mines extending through the sediment, especially in cases tested under low sulfide conditions, which forced clams to stretch their feet farther. While they had expected some extension, Dufour says the results were "amazing." She found clams with shells measuring 4.5 millimeters that had elongated their feet some 13 centimeters from the shell.

"What I find the most interesting about this work is that only the clams with symbionts make these very long burrows," said Dufour, a graduate student in the marine biology curricular program at Scripps. "The thyasirids in my study that didn’t have symbionts did not make such burrows. To get the sulfide the bacteria need, these clams have evolved the ability to mine the sediment with their feet-it shows that very different species can find amazing ways of cooperating."

The study was supported by Scripps Institution’s graduate department, the Baxter and Alma Ricard Foundation, and the National Science Foundation.


Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The scientific scope of the institution has grown since its founding in 1903. A century of Scripps science has had an invaluable impact on oceanography, on understanding of the earth, and on society. More than 300 research programs are under way today in a wide range of scientific areas. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Now plunging boldly into the 21st century, Scripps is celebrating its centennial in 2003.

Mario Aguilera | Scripps News
Further information:
http://scrippsnews.ucsd.edu/article_detail.cfm?article_num=613

More articles from Life Sciences:

nachricht Structure of a mitochondrial ATP synthase
19.11.2019 | Science For Life Laboratory

nachricht Mantis shrimp vs. disco clams: Colorful sea creatures do more than dazzle
19.11.2019 | University of Colorado at Boulder

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>