Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory scientists use enzymes to enhance regeneration of damaged peripheral nerves in mice

10.11.2003


Scientists at Emory University School of Medicine were able to enhance significantly the re-growth of damaged peripheral nerves in mice by treating them with enzymes that counteracted a growth-blocking mechanism. The research offers the potential for improving functional recovery after peripheral nerve injuries. The Emory scientists were led by Arthur English, PhD, professor of cell biology, with faculty colleagues Robert McKeon, PhD and Erica Werner, PhD and former Emory student M.L. Groves. Results of the research will be presented at the annual meeting of the Society for Neuroscience on November 8 in New Orleans.



Peripheral nerves extend from the spinal cord to targets in the periphery such as muscle and skin. Individual peripheral nerves contain thousands of individual fibers, called axons, which project to specific targets. When a peripheral nerve is damaged, axons between the injury site and muscle or skin degenerate and function is lost. Although peripheral nerve axons are capable of regenerating after such injuries, in humans this regeneration is modest at best and there currently is no effective clinical treatment.

One reason peripheral nerves do not regenerate well is the presence of growth inhibitory substances, called proteoglycans, within the environment of the damaged nerve. In an effort to improve the ability of axons to regenerate, the Emory scientists attempted to modify this inhibitory environment following peripheral nerve injury in mice. They treated the peripheral portion of severed nerves with each of three enzymes that degrade specific types of proteoglycans.


During the first two weeks after the injury, axons regenerated through enzyme-treated tissues much more effectively than through untreated tissues. Not only did the axons regenerate, those that did extended more than twice as far.

"This study shows that treatment with enzymes that degrade proteoglycans offers the potential to enhance regeneration, and may lead to improved recovery of function after peripheral nerve injuries," says Dr. English.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>