Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Several commonly used pesticides are toxic to mitochondria in laboratory experiments

10.11.2003


Pesticides attack same cellular targets as rotenone - already implicated in Parkinson’s disease



Scientists at Emory University School of Medicine have found in laboratory experiments that several commonly used pesticides are just as toxic or even more toxic to the mitochondria of cells than the pesticide rotenone, which already has been implicated in the development of Parkinson’s disease. The Emory neurologists, led by Tim Greenamyre, MD, PhD and Todd B. Sherer, PhD, will present the results of their comparative research with pesticides at the Society for Neuroscience meeting in New Orleans on Saturday, Nov. 8.
Parkinson’s disease, which is one of the most common neurodegenerative diseases, has been associated abnormalities of mitochondria, which are the "power plants" that provide all cells with energy. Rotenone and many other pesticides are known to damage the mitochondria by inhibiting a mitochondrial enzyme called complex I. In earlier experiments, Dr. Greenamyre and his colleagues found that chronic treatment with low levels of rotenone caused gradual degeneration of the dopamine neurons in rats, and reproduced many of the features of Parkinsonism.

In the new study, the Emory scientists exposed human neuroblastoma cells to the pesticides rotenone, pyridaben, fenazaquin, and fenpyroximate, all of which inhibit complex I. Pyridaben was by far the most potent toxic compound, followed by rotenone and fenpyroximate, with fenazaquin being the least toxic. Pyridaben was also more potent than rotenone in producing "free radicals" and oxidative damage to the cells, both of which are thought to be important in causing Parkinson’s disease.



"These results show that commonly used pesticides are toxic to cells, and may cause the kinds of cellular damage that lead to diseases such as Parkinson’s," Dr. Sherer says. "Although our study does not prove that any particular pesticide causes Parkinson’s, it does lead to more questions about the safety of chronic exposure to these environmental agents and certainly warrants additional research." Last year Emory created a new Emory Collaborative Center for Parkinson’s Disease Environmental Research through a grant of more than $6.5 million from the National Institute of Environmental Health Sciences.

"For quite a while scientists have believed that environmental factors, including pesticides, may be important in causing Parkinson’s disease," Dr. Greenamyre says. "We are continuing our research to determine exactly how these exposures cause nerve cell damage and death."

Other Emory scientists involved in the research study were Gary W. Miller, PhD, associate professor in Emory’s Rollins School of Public Health, and neurologists Alexander Panov, PhD and Jason Richardson, PhD.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>