Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photochemistry research could lead to cleaner environment, new sensors

10.11.2003



Alistair Lees spends much of his research time hoping to see the light.

Using tools that improve by several orders of magnitude on the accuracy of microscopes and stopwatches, Lees is working at the molecular level to explore the effect of light on chemical systems. The field is called photochemistry and Lees’ efforts could help to find less-expensive ways to produce gasoline, make the environment cleaner and safer, and enhance the quality of microcircuitry and the equipment that relies on it.

While most chemists work with molecules in their ground or normal states, Lees has spent the past two decades working with "excited" molecules, a state attained when molecules absorb light, known as second chemistry.



The reactions that occur during these excited states are incredibly fast - typically about one tenth of one quadrillionth of a second. To be studied, they must be slowed or in some other way inhibited and Lees has developed a unique approach.

Excited state molecules generally emit light, give off heat or break into fragments as they return to the ground state. Relying on this, many chemists - like forensic experts who determine the nature of an explosion by studying resulting debris - use a technique called matrix isolation to study the fragments produced immediately after a molecule emits light.

Lees has instead synthesized entire new molecules, which do not fragment in their excited states. When cooled, his creations remain intact and display luminescence, giving him an unprecedented chance to study the second chemistry involved - an approach, which has opened the door to the development of several promising applications.

Working with $1.2 million in grants from the U.S. Department of Energy and the American Chemical Society, Lees is studying hydrocarbon activation, particularly how some new rhodium and iridium chemical compounds act as catalysts to break apart the bonds of methane.

The reaction suggests the possibility that the small methane molecule could be built up to the size of the larger oil molecule. Methane, or natural gas, usually does not react with other compounds, but because it is both abundant and recyclable, it is an attractive alternative to oil.

Lees’ preliminary research indicates it might someday be able to replace oil in the production of many fuels, as well as a host of other products, including plastics and pharmaceuticals.

Lees’ research is also likely to help manufacturers of a wide range of products. Supported by a grant from IBM, Lees is incorporating some of his light-emitting molecules into adhesive polymers. As the adhesive sets, its luminescence changes from red to orange to yellow, signaling appropriate curing and an optimal bond.

The microelectronics industry is interested in this research. If adhesives aren’t completely set during the assembly process, machines fail, parts break and production costs soar. The aerospace and automobile industries are also interested, Lees said. "Clearly, it’s important, when you’re riding in a car or a plane that it not fall apart," he said Photoinitiators is another application of Lees’ work. "We found that some of our organometallic compounds actually initiate polymerizations reactions when exposed to light," he said. Lees is collaborating with General Electric and IBM to research how this technique could be used to enhance microcircuitry production.

Another application of Lees’ work is likely to stem from the arena known as supramolecular chemistry. Lees is finding ways to insert luminescent compounds into the cavities of some large molecules. Because the luminescence of such molecules changes substantially in reaction to their environment, they make excellent sensors.

Recently, Lees and his team found a compound that is a good sensor for cyanide. Others, he said, are sensitive to hydrocarbon vapors, which may help detect pollutants, another important application in today’s industrial world.

Ingrid Husisian, Susan E. Barker | dicover-e
Further information:
http://research.binghamton.edu/Discovere/november2003/TopStories/Lees.htm

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>