Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can viruses that infect bacteria fight plant disease?

07.11.2003


While the medical community has been exploring the use of bacteriophages, a form of virus that can be used to manage bacteria that have become resistant to antibiotics, plant pathologists with the American Phytopathological Society (APS) now say that this same approach may also help fight plant disease.

According to Jason Gill, a phage researcher at the University of Guelph, Guelph, Ontario, phages have been proposed as plant-pathogen control agents in a process known as phage therapy--the application of phages to ecosystems to reduce the population size of bacteria. "Phage could be explored as a biological control agent--the use of one organism to suppress another," said Gill.

Like other methods of biological control, one advantage of phage therapy is a reduction in the usage of chemical agents against pest species, which, in the case of phage, means a reduction in the usage of chemical antibiotics, said Gill. Another potential benefit of phage therapy is that phages are generally quite specific for their host bacterial species, and so can be targeted towards harmful bacteria while leaving other, potentially beneficial bacteria intact.



Phage therapy has been used successfully against bacterial blotch of mushrooms caused by Pseudomonas tolaasii. In studies notable for the employment of phage host-range mutants, phage therapy has also been employed against bacterial blight of geraniums and bacterial spot of tomatoes, both caused by pathovars of Xanthomonas campestris.

Though seemingly effective in certain situations, it is likely that phage therapy against bacterial plant pathogens will not prove to be a magic bullet in all cases, said Gill. The natural interactions between phages, bacteria, and plants are still not well understood. While phages that attack pathogenic bacteria can help improve plant health, other phages may attack the bacteria that affect the root nodulation of plants such as soybeans, which are necessary for normal plant growth.

Amy Steigman | EurekAlert!
Further information:
http://www.apsnet.org

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>