Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists work to break cellular code

07.11.2003


Despite the rich knowledge scientists now have of the genes that constitute the human genome, researchers have yet to unravel the precise choreography by which they work – or malfunction – together in the cell in response to triggers from the outside world.



"There is a code we need to understand to determine what happens to a cell under many different conditions, and ultimately to make predictions of how an entire genome is regulated," explains Julia Zeitlinger, a postdoctoral associate at Whitehead Institute for Biomedical Research.

Key to cracking this code, she says, is a set of proteins called transcription factors, which bind to specific genes to produce proteins. Akin to computer programs that return different results depending on the input data, transcription factors can carry out multiple functions in the cell in response to distinct stimuli.


For example, expose a yeast transcription factor called Ste12 to a certain pheromone from a potential mating partner, and it induces a mating response. But starve the yeast for nutrients, and the same transcription factor provokes filamentation – the yeast begins to sprout numerous threadlike strands.

Pinpointing the mechanism that makes transcription factors such as Ste12 respond differently under different environmental inputs could enable scientists to better predict cellular behavior and disease pathology.

In a study published earlier this year in the journal Cell, Zeitlinger and colleagues at Whitehead discovered that when a multipurpose transcription factor is exposed to a particular environmental condition, it directly orchestrates a global change throughout the genome in binding sites involved in the cellular behavior induced by that condition.

The team monitored all binding sites of the transcription factor Ste12 in yeast while exposing the genome to the pheromone that induces mating and to butanol, an alcohol that mimics the conditions that promote filamentation. They used a technique called genome-wide location analysis, a process pioneered by Whitehead Member Richard Young that uses DNA microarrays to enable rapid analysis of protein interaction with the DNA of an entire genome.

"When we profiled the binding sites of Ste12 under the two developmental conditions, we found that Ste12 indeed undergoes the predicted global switch in binding," recalls Zeitlinger, who works in Young’s lab and collaborates with scientists at MIT’s The Broad Institute. The researchers found that this transcription factor, rather than activating a chain reaction of other transcription factors in the cellular network, directly determines which genes are activated under each condition.

Zeitlinger plans to investigate if this mechanism occurs generally in yeast and higher organisms, work that ultimately could help physicians better understand, diagnose and disrupt certain diseases at the cellular level.

"Ste12 is able to undergo the switch in binding because of its cooperative interaction with another transcription factor, Tec1," Zeitlinger says. "My hypothesis is that there are different types of cooperative interactions between transcription factors. By defining them and understanding how they work, I hope to construct a grammar to the regulatory code. This will help to make predictions of cellular behavior based on DNA sequence."

Kelli Whitlock | EurekAlert!
Further information:
http://www.wi.mit.edu/home.html

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>