Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Home In On Obesity Gene And Offer Explanation For Overeating

03.11.2003


An international team of researchers has identified the role of a gene which may explain why some people overeat and become obese.



Their research, published today in Public Library of Science Biology, shows that the gene GAD2 has an appetite stimulating role, and that one form of the gene is strongly associated with obese people.

While the researchers recognise that obesity is a result of the interactions of many genes and environmental factors, this is one of the first genes to be strongly touted as a candidate ‘gene for obesity’.


GAD2, which sits on chromosome 10, acts by speeding up production of a neurotransmitter in the brain called GABA, or gamma-amino butyric acid. When GABA interacts with another molecule named neuropeptide Y in a specific area of the brain - the paraventricular nucleus of the hypothalamus - we are stimulated to eat.

The researchers behind this study believe that people who carry a more active form of the GAD2 gene build up a larger than normal quantity of GABA in the hypothalamus, and suggest that this over accumulation of GABA drives the stimulus to eat further than normal, and is thus a basis for explaining why obese people overeat.

Professor Philippe Froguel, senior author of the research, from Imperial College London, and Hammersmith Hospital, London, and who carried out the research while at the Institut Pasteur de Lille, France, said: “The discovery that this one gene plays a role in determining whether someone is likely to overeat could be crucial in understanding the continued rise in obesity rates around the world.

“Genetic factors alone can not explain the rapid rise in obesity rates, but they may provide clues to preventative and therapeutic approaches that will ease the health burden associated with obesity.

“Having identified this gene, it may be possible to develop a screening programme to identify those who may be at risk of becoming obese later in life, and take effective preventative measures.”

The team compared genome-wide scans of 576 obese and 646 normal weight adults in France, from which they identified two alternative forms, or alleles, of the GAD2 gene.

One form of the gene was found to be protective against obesity, while another increased the risk of obesity. The normal weight group of French adults had a higher frequency of the protective form of the GAD2 gene. Obesity is three to five times less prevalent in France than in the USA.

In addition to the genome-wide scans, the obese patients also completed an eating habits questionnaire, measuring dietary restraint, disinhibition and perceived hunger. The results showed that those carrying the GAD2 allele that increases the risk of obesity were significantly more likely to reveal an inability to control their food intake, and perceive high levels of hunger.

Authors of this research are based at Imperial College London, Hammersmith Hospital, London, the Institut Pasteur de Lille, France, the University of Washington, USA, Paul Brousse Hospital, and Paris VI University, France.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk.
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>