Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not all aerial reptiles were level-headed, CT scans show

30.10.2003


Inside view of pterosaurs’ brain yields insights to posture, behavior



With its 13-foot wing span, a flying dinosaur soars above a lake, scanning for dinner as its shadow glides across the water’s surface below. Eying a fish, the aerobatic reptile, called a pterosaur, dives through the air, its shadow shrinking and darkening until – splash! The fish is in the pterosaur’s beak, which resembles a cross between a pelican’s bill and a crocodile’s snout.

While such a scene would have occurred more than 100 million years ago, a study released this week gives a clearer picture of what went on inside the pterosaur’s head. When scientists using skull fossils examined the neuroanatomy responsible for flight control and prey spotting, they found key structures to be specialized and enlarged, a discovery that could revise views of how vision, flight, and the brain itself evolved.


The researchers, led by Lawrence Witmer of Ohio University, took a high-tech look through two skulls of separate species of pterosaurs. Using computerized images derived from X-rays, they peered into the vestibular apparatus, the passageways and chambers responsible for maintaining equilibrium. They also dove "virtually" into the brain cavity to analyze the regions responsible for coordinating wing movements, for scanning the environment, and for "stabilizing gaze," a necessity for airborne predators.

The scientists report their findings in the Oct. 30 issue of the journal Nature. The research team also included Sankar Chatterjee of the Museum of Texas Tech University and Jonathan Franzosa and Timothy Rowe from the University of Texas (UT) at Austin. The trio put the two skulls through the scanner at UT’s High-Resolution X-ray Computed Tomography Facility.

The research was supported by the Division of Integrative Biology and Neurosciences of the National Science Foundation (NSF), the independent federal agency that supports fundamental research and education across all fields of science and engineering.

According to William Zamer, who directs NSF’s Ecological and Evolutionary Physiology program, "It is a beautifully integrative study: It uses paleontological information, state-of-the-art technology to reconstruct the brain anatomies, and existing knowledge of the working of the semicircular canals to draw fascinating inferences about how these organisms may have performed when they were alive."

Some differences between the two pterosaurs were outwardly apparent.

The skull of Rhamphorhynchus muensteri, a species found in Jurassic formations in Germany, is about five inches long. From its broad back, the skull tapers steadily to a pointed beak.

The skull of Anhanguera santanae, found in the Cretaceous deposits of Brazil, is almost two feet long. Narrower and triangular in cross-section, it tapers toward both the front and the back.

"Anhanguera was quadrupedal and didn’t walk solely on its back feet," says Witmer. "It had long forelimbs, though, and so was canted into a more upright position than was the shorter-armed Rhamphorhynchus."

Its head hung at a downward slant, which, according to Witmer, likely enhanced its binocular vision and terrestrial agility.

"The major evidence for the down-turned head," he says, "comes from the orientation of the inner ear canals."

Those, however, remain deep within Anahanguera’s rock head, visible only virtually.

To examine the skulls’ chambers encased within the mineralized fossils, the researchers used non-invasive X-ray computerized axial tomography – more commonly known as "CAT scans." Custom-built to explore the internal structure of natural – and often fossilized – objects, the scanner at the UT facility has greater resolution and penetrating power than a conventional medical-diagnostic CAT scanner. It feeds its data to DigiMorph, an NSF-funded digital library that develops and makes available 2-D and 3-D structural visualizations of living and extinct animals, mostly vertebrates.

DigiMorph turned the scanners’ deep and detailed views into digitized "virtual" endocasts, which revealed more differences between the vestibular networks in the two skulls. For example, the orientation of this "osseous labyrinth" relative to the long axis of the skulls varied. This is particularly noteworthy because of the semicircular canals. These fluid-filled chambers serve as levels to help the brain determine which way is up, arrange an appropriate rate of acceleration, and maintain equilibrium. (All vertebrates have them in their inner ears.)

In Rhamphorhynchus, the orientation of the canals suggests a level-headed approach to flying. In Anhanguera, it suggests a head turned strongly downward both in flight and when on the ground.

Both extinct pterosaurs had about twice the relative amount of labyrinth space than do living birds. (Birds, likewise, have enlarged labyrinths relative to mammals.)

The researchers also found in both animals another greatly enlarged neurological structure critical to flight. Called the flocculus, this lobe of the cerebellum has important connections with the vestibular apparatus, the eye muscles and neck muscles, which work together to stabilize and sharpen an image of prey upon the retina.

The flocculus may also connect to the membrane covering the wing, gathering massive amounts of sensory input on body orientation amidst aerodynamic forces. In both pterosaur subjects, the flocculi occupy about 7.5 percent of total brain mass; in birds, they occupy about 2 percent or less.

According to the Nature report, "Enhancement of such mechanisms seems reasonable in these two visually oriented pterosaurs given their apparent foraging style of aerial fish-eating."



The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Sean Kearns | National Science Foundation
Further information:
http://www.nsf.gov
http://www.digimorph.org
http://www.ohiou.edu/researchnews/science/witmervisuals/index.html

More articles from Life Sciences:

nachricht Research on TGN1412 – Fc:Fcγ receptor interaction: Strong binding does not mean strong effect
23.04.2019 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Simple and Fast Method for Radiolabelling Antibodies against Breast Cancer
23.04.2019 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>