Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model of Alzheimer’s, other diseases may clarify steps of brain degeneration

30.10.2003


A new mouse model developed by Harvard Medical School researchers and reported in the October 30 Neuron may allow scientists for the first time to spotlight two key proteins in a living animal and see how they contribute to the neuronal death and atrophy found in neurodegenerative diseases. The two proteins are dubbed p25 and cyclin-dependent kinase 5 (Cdk5).



"This is an excellent animal model for any therapeutic approach toward p25 and its link to Alzheimer’s and similar neurodegenerative diseases," says Li-Huei Tsai, HMS professor of pathology and Howard Hughes Medical Institute associate investigator, the study’s lead author. "We know that p25 causes neurodegeneration, and we want to figure out how that mechanism works."

The new model is the latest in Cdk5 research from the lab of Li-Huei Tsai. Over the past nine years, Tsai and her colleagues have defined many of Cdk5’s functions and noted the role its usual regulator p35 plays in orienting neuronal migration and growth. Their latest challenge is deciphering how Cdk5 and the pernicious regulator p25 lead to neurodegenerative diseases.


The protein p25 is usually not found in healthy brains, but is formed when a stroke or another oxygen-restricting event cuts p35--a beneficial protein found in healthy brains--to form p25, starting a domino effect that leads to neuronal death and malformation. Once present, p25 activates Cdk5 and alters its normally constructive behavior to kill neurons. To make matters worse, p25 is longer-lived than p35, so it accumulates in the brain and continues to keep Cdk5 active. Overactive Cdk5 and accumulated p25 have been noted in the brain tissue of people with the neurodegenerative diseases Alzheimer’s and Niemann–Pick type C. But the lack of a mouse model prevented researchers from demonstrating in vivo the effects of Cdk5 and p25 in the brain.

Tsai’s model exhibits the two characteristics researchers want to study: profound neuronal death and tau-associated degeneration. Some forms of the tau protein are associated with neurodegenerative diseases. In the model, Tsai turns on the production of p25 when the mice are mature. The mice were created with a gene that overproduces p25, but this gene is inhibited in the presence of the chemical doxycycline. The mice were conceived and raised for four to six weeks on doxycycline, which allowed their brains to develop normally. Once the mice were mature, Tsai turned on the p25 gene by removing doxycycline from their food.

Tsai’s model produces the results she expected. The mouse brains show a high accumulation of p25, substantial atrophy, progressive neuronal loss and tau pathology. After only 12 weeks of p25 exposure, the mouse brains were disintegrating, with a 40 percent decrease in neuronal density. By 30 weeks after p25 induction, the aggregation of tau proteins caused neurofibrillary tangles in the brain, a symptom of Alzheimer’s disease. The brains also showed neurodegeneration and neuronal cell death similar to earlier in vitro work.

Other labs have created mouse models that overproduce p25 throughout their lives, but these models fail to exhibit high brain cell p25 levels and neuronal death. Tsai explains that mice in these earlier models may have found a way to cope with the overexpression of toxic p25 during development, thereby lowering the accumulated p25 levels in their brains. These p25 levels may not have reached the threshold to induce the neuronal death and substantial tau pathology associated with aberrant p25. Without the high levels of accumulated p25 or evidence of neuronal death, these mice are not useful as models of neurodegeneration.

John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu/
http://www.hms.harvard.edu/news/index.html

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>