Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model of Alzheimer’s, other diseases may clarify steps of brain degeneration

30.10.2003


A new mouse model developed by Harvard Medical School researchers and reported in the October 30 Neuron may allow scientists for the first time to spotlight two key proteins in a living animal and see how they contribute to the neuronal death and atrophy found in neurodegenerative diseases. The two proteins are dubbed p25 and cyclin-dependent kinase 5 (Cdk5).



"This is an excellent animal model for any therapeutic approach toward p25 and its link to Alzheimer’s and similar neurodegenerative diseases," says Li-Huei Tsai, HMS professor of pathology and Howard Hughes Medical Institute associate investigator, the study’s lead author. "We know that p25 causes neurodegeneration, and we want to figure out how that mechanism works."

The new model is the latest in Cdk5 research from the lab of Li-Huei Tsai. Over the past nine years, Tsai and her colleagues have defined many of Cdk5’s functions and noted the role its usual regulator p35 plays in orienting neuronal migration and growth. Their latest challenge is deciphering how Cdk5 and the pernicious regulator p25 lead to neurodegenerative diseases.


The protein p25 is usually not found in healthy brains, but is formed when a stroke or another oxygen-restricting event cuts p35--a beneficial protein found in healthy brains--to form p25, starting a domino effect that leads to neuronal death and malformation. Once present, p25 activates Cdk5 and alters its normally constructive behavior to kill neurons. To make matters worse, p25 is longer-lived than p35, so it accumulates in the brain and continues to keep Cdk5 active. Overactive Cdk5 and accumulated p25 have been noted in the brain tissue of people with the neurodegenerative diseases Alzheimer’s and Niemann–Pick type C. But the lack of a mouse model prevented researchers from demonstrating in vivo the effects of Cdk5 and p25 in the brain.

Tsai’s model exhibits the two characteristics researchers want to study: profound neuronal death and tau-associated degeneration. Some forms of the tau protein are associated with neurodegenerative diseases. In the model, Tsai turns on the production of p25 when the mice are mature. The mice were created with a gene that overproduces p25, but this gene is inhibited in the presence of the chemical doxycycline. The mice were conceived and raised for four to six weeks on doxycycline, which allowed their brains to develop normally. Once the mice were mature, Tsai turned on the p25 gene by removing doxycycline from their food.

Tsai’s model produces the results she expected. The mouse brains show a high accumulation of p25, substantial atrophy, progressive neuronal loss and tau pathology. After only 12 weeks of p25 exposure, the mouse brains were disintegrating, with a 40 percent decrease in neuronal density. By 30 weeks after p25 induction, the aggregation of tau proteins caused neurofibrillary tangles in the brain, a symptom of Alzheimer’s disease. The brains also showed neurodegeneration and neuronal cell death similar to earlier in vitro work.

Other labs have created mouse models that overproduce p25 throughout their lives, but these models fail to exhibit high brain cell p25 levels and neuronal death. Tsai explains that mice in these earlier models may have found a way to cope with the overexpression of toxic p25 during development, thereby lowering the accumulated p25 levels in their brains. These p25 levels may not have reached the threshold to induce the neuronal death and substantial tau pathology associated with aberrant p25. Without the high levels of accumulated p25 or evidence of neuronal death, these mice are not useful as models of neurodegeneration.

John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu/
http://www.hms.harvard.edu/news/index.html

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>