Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers discover molecular signaling system controlling aspects of embryonic development

29.10.2003


Identification of ’Jelly Belly’ gene may lead to new drugs to combat heart disease, cancer and neurological disorders



Researchers at Oregon Health & Science University (OHSU) have identified a secreted signaling protein that regulates smooth muscle development in fruit flies. In the absence of a protein called "Jelly Belly (Jeb)," primitive smooth muscle cells fail to migrate or differentiate, according to study results published in the October 2 issue of Nature.
"Our research shows that Jelly Belly is required for the normal development of the smooth muscle that surrounds the gut in flies and we are investigating it in the arteries of mammals. It is also related to the development of heart muscle," said Joseph B. Weiss M.D., Ph.D., principal investigator and assistant professor (molecular medicine and cardiology), and Heart Research Center scientist in the OHSU School of Medicine.

Smooth muscles are involved in involuntary but essential functions, such as digestion and control of blood flow. Unlocking the genetic mechanisms controlling their embryonic development may allow scientists to understand better what triggers their abnormal growth. Human disorders that are linked to abnormal smooth muscle growth or function include high blood pressure, arteriosclerosis and congenital heart defects.



"Weiss has discovered a link in the chain of events that signals primitive cells in the fruit fly embryo to become muscle cells. The findings are key to our quest to identify embryonic genes that are linked to cardiac diseases," said Kent L. Thornburg, Ph.D., professor of medicine (cardiology) and director of the OHSU Heart Research Center. Molecules in fruit flies are functionally similar to molecules in humans typically allowing discoveries in fruit fly biology to be extrapolated to humans. Weiss’s findings also illuminate an aspect of how embryonic cells organize themselves into the complex body plans observed across the animal world, including humans. At the embryonic stage, identical primitive cells somehow "choose" a path that determines their biological destiny, specifying the organ or tissue they will ultimately become. While scientists have long known that signals exchanged between cells control this process, little is known about the intricacies of these developmental systems.

This research showed that the Jeb protein controls the choice of certain embryonic cells between two fates. The cells that receive the Jeb signal become "founder cells" that function as pioneers to organize the development of smooth muscle. Cells that do not get the Jeb signal become "fusion cells" that attach to and fuse with founder cells to augment muscle mass.

This work established the essential signaling role of the Jeb protein. However, the identity of the molecular "Jeb-sensor" remained unknown. Finding this receptor was crucial to provide the complete molecular foundation needed for developing new drugs.

"Receptor and signal pairs are ideal targets for medicines because this is where human biology gets very specific. Identifying the players allows us to design drugs targeted at a precise molecular interaction. These types of drugs tend to have the maximum therapeutic impact with the fewest side effects," said Weiss.

Previous independent studies had identified a cell-surface receptor protein called anaplastic lymphoma kinase (Alk) in the late 1990s. All that was known about human Alk was that it could cause lymphoma if abnormally regulated; its normal function had not been determined.

After initial publication of Weiss’s research on Jeb, scientists at New York’s Mt. Sinai School of Medicine observed that the published expressions of Alk and Jeb appeared compatible and hypothesized that Jeb could be the protein that activates the Alk receptor. Subsequent collaborative studies between OHSU and Mt. Sinai researchers in fruit flies confirmed this hypothesis.

In addition to identifying a central signaling pathway for smooth muscle development, these collaborative results have expanded the clinical applications of Weiss’s initial research. Given the role of Alk in cancer, Weiss speculates that other tumors caused by abnormal regulation of Jeb-like activators pf Alk, would respond to drugs that target the interaction between Jeb and Alk.

Further, other studies suggest that the Jeb-Alk signaling pathway may also be important in adults. So far, Weiss and colleagues have found the Jeb protein in adult neurons, hinting that this signaling mechanism may play an essential role in neurological function. Already, an independent study has found a Jeb-like molecule in an adult worm (C. elegans), which appears to play a role in learning and memory.

"The same molecules that regulate growth and development in embryos can be expected to play a role in adaptive functions in the adult," said Weiss.

Weiss is currently conducting research to determine the possible role of Jeb in the function of the normal nervous system and, by comparison, the role of the Jeb-Alk signaling mechanism in adult neurological disorders.


Weiss’s research is funded in part by the National Institutes of Health/National Heart, Lung and Blood Institute, Howard Hughes Medical Institute and the American Heart Association.

Christine Pashley | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>