Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological trick reveals key step in melatonin’s regulation

27.10.2003


Johns Hopkins researchers have uncovered a key step in the body’s regulation of melatonin, a major sleep-related chemical in the brain. In the advance online section of Nature Structural Biology, the research team reports finding the switch that causes destruction of the enzyme that makes melatonin -- no enzyme, no melatonin.



Melatonin levels are high at night and low during the day. Even at night, melatonin disappears after exposure to bright light, a response that likely contributes to its normal daily cycle, but plagues shift workers and jet setters by leading to sleeplessness. To help understand melatonin’s light-induced disappearance, the Hopkins researchers turned to the enzyme that makes it, a protein called AANAT.

One way cells turn proteins like AANAT on and off is by modifying them, attaching or removing small bits, such as phosphate groups, to particular spots along the protein’s backbone. For AANAT, the key spot turns out to be building block number 31, the researchers have found.


"We have discovered that addition and removal of the phosphate group at this position is the key step in regulating the enzyme’s stability," says Philip Cole, M.D., Ph.D., professor and director of pharmacology and molecular sciences in Hopkins’ Institute for Basic Biomedical Sciences. "When this phosphate group is present, the enzyme is stable."

To test the importance of the phosphate group to the enzyme’s stability, research associate Weiping Zheng, Ph.D., developed a mimic of the key building block with the equivalent of a permanently affixed phosphate group.

Zheng inserted the mimic into the appropriate place in the enzyme, and research associate Zhongsen Zhang injected the altered enzyme into cells. The altered enzyme stayed intact in the cells much longer than the normal enzyme, whose phosphate group can easily be removed, the scientists report.

The researchers’ next step is to determine how exposure to light accelerates removal of the phosphate and destruction of the enzyme, leading to a rapid drop off in melatonin. "Now we can fish for unknown players in the degradation of the enzyme and hopefully find the trigger than leads to its light-activated destruction," says Zheng.

They’ve already shown that the phosphate group on building block number 31 also improves the enzyme’s ability to bind to a protein known as 14-3-3, further increasing the enzyme’s stability and delaying its degradation.

Cole adds that the mimic Zheng developed will do far more than just ease study of melatonin’s daily cycles. Literally thousands of important proteins are controlled by the addition or removal of phosphate groups, he says, offering thousands of opportunities to use the mimic to help understand cellular processes and their controls.


Funding for the study was provided by the National Institutes of Health and the Ellison Medical Foundation. Aspects of the work were carried out at the AB Mass Spectrometry/Proteomics Facility at the Johns Hopkins School of Medicine, which is funded by the U.S. National Center for Research Resources, the Johns Hopkins Fund for Medical Discovery and the Johns Hopkins Institute for Cell Engineering.

Authors on the study are Zheng, Zhang and Cole of The Johns Hopkins University School of Medicine, and Surajit Ganguly, David Klein and Joan Weller of the National Institutes of Health.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.nature.com/nsb/

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>