Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover how key cancer protein works

24.10.2003


Understanding cancer

Mayo Clinic researchers are the first to describe what goes wrong during the growth cycle of certain cells that can lead to inherited forms of breast cancer. Knowing the nature of this biochemical modification is a first step to designing drugs that can correct it to stop cancer.

The Mayo Clinic research finding appears in today’s issue of the journal Science. It is important because it solves an aspect of a mystery that cancer researchers worldwide have been intensely investigating. Their question is: How do the regulating mechanisms of the "cell-cycle" work?



The cell cycle is the complex, natural -- and normally orderly -- process by which cells reproduce. The Mayo Clinic research reveals the details of a molecular mechanism involved in cell cycle regulation of a gene known as the "BRCA1 tumor suppressor gene." They focused on this gene because an estimated 50 percent of inherited breast cancers are linked to growth errors -- also called mutations -- in this gene. They hypothesized that a specific kind of biochemical modification was involved in disrupting the cell cycle to cause BRCA1 mutations. And they were right.

"With this breast cancer gene, the understanding is that if this gene is mutated it may trigger additional mutations throughout your lifetime and that contributes to a lifetime risk of developing breast cancer. We wanted to understand the molecular mechanism behind this," says Junjie Chen, Ph.D., of the Mayo Clinic Department of Oncology, and lead author of the Science report. "Now that we understand one aspect of it, this allows us to go to the next level, such as how to use our understanding to target cells so we can gain control of the cell cycle to stop cancers."

In the language of science, their principal finding is this: That a specific biochemical modification known as "phosphorylation" (fos-for-a-LAY-shun) is required at certain cell-cycle stages to activate proteins associated with the BRCA1 gene. These proteins are essential to the effective tumor-suppression function that BRCA1 genes perform.

Biology Backgrounder

Genes are strings of DNA molecules. They are found on chromosomes within cell nuclei. DNA is like a storage bin for vital information -- like the hard drive of a computer. To be useful, a computer hard drives needs to run a program that performs work. It’s the same with DNA. To be useful, it runs programs (RNAs) that make desired products. The products are proteins. Proteins are the substances that carry out all life functions, which is why advanced cancer research focuses on them.

To do their jobs, proteins need to be activated. They become activated by binding to other protein partners. The Mayo Clinic team investigated a specific kind of protein the BRCA1 gene codes for, known as a BRCT-domain protein. The BRCT-domain influences how the protein binds and with what protein partners it binds -- which in turn, affects the role the protein plays in the cycle of cell growth. BRCT domains are found in many proteins involved in cell-cycle regulation, and have for some years been thought to be key players in cell-cycle regulation. But just how they did so was not known.

The Mayo Clinic Research Solves The Mystery

The Mayo team showed that phosphorylation of a binding partner is necessary to activate the BRCT-domain protein. Once activated, the BRCT-domain protein then helps regulate vital tasks in the cell cycle. These tasks include repairing DNA or signaling DNA damage. When these tasks are accomplished, the BRCA1 gene can function correctly to suppress tumors. Without phosphorylation of BRCA1 binding partners, BRCA1 cannot function to suppress tumors. This leaves cells vulnerable to the cumulative mutations that can eventually produce breast cancer.

Implications for Patient Care

This finding is an important early step in research to devise new anti-cancer treatments. Understanding the interactions between BRCT domains and their targets will help researchers make the next move: to devise drug interventions that exploit phosphorylation bonds between key proteins. In this way, they could therapeutically regulate the cell cycle.

Robert Nellis | EurekAlert!
Further information:
http://www.sciencemag.org/content/current

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>