Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of antibiotics stops pathogens in their genetic tracks

24.10.2003


Researchers have found that a promising new class of antibacterial chemicals inhibits one of the most fundamental processes of life – a cell’s ability to express genetic material. Knowing exactly how these chemicals keep bacterial cells in check can help scientists make more effective antibiotics.

Like many bacterial inhibitors, this new class of compounds – called the CBR703 series – inhibits RNA polymerase, the key enzyme in gene expression. However, the unique mechanism that these compounds use to inhibit RNA polymerase was previously unknown and is first described in this week’s journal Science.

"It’s a long way between knowing that something will kill bacteria and figuring out the exact process by which the bacteria is killed," said Irina Artsimovitch, a study co-author and an assistant professor of microbiology at Ohio State University. "Other antibiotics also inhibit RNA polymerase, but the ones in this study use a radically different inhibitory mechanism."



According to the study, CBR703 inhibitors hindered the ability of RNA polymerase in Escherichia coli to perform crucial catalytic functions, such as building molecules of RNA. Compounds in the CBR703 series – all are synthetic chemicals – render RNA polymerase useless by binding to a specific place on the enzyme – a necessary step in the process.

"Unless you know where the inhibitor binds, you can’t draw any conclusions about how that inhibitor affects its target," Artsimovitch said. "On the other hand, once you have this information, you could predict if the inhibitor would be effective against a broad range of bacteria, as the binding site may not be the same in RNA polymerase enzymes from different bacteria."

She and her colleagues chose to study the effects of CBR703 inhibitors on E. coli, since the RNA polymerase enzyme in many pathogens is similar to that found in the E. coli bacteria. CBR703 compounds are not yet used as commercial antibiotics.

While the CBR703 inhibitors seemed to stop gene expression in E. coli, the researchers found that the compounds wouldn’t inhibit RNA polymerase in human cells. Finding this lack of inhibition from human cells is key to designing new drugs, as some antibiotic compounds could harm both bacteria and human cells.

"When we find something that inhibits a particular process, it’s easier to make targeted drugs," Artsimovitch said. "In this case, finding something that inhibited bacterial RNA polymerase lets us look at the structure of the enzyme and determine how to improve the inhibitors further to make them more effective."

Artsimovitch conducted the study with Robert Landick, a professor of microbiology at the University of Wisconsin-Madison and Clement Chu and A. Simon Lynch, both with Cumbre, Inc., a drug discovery firm in Dallas.

The researchers at Cumbre, Inc., prepared and analyzed a large set of chemical compounds in order to find one that would inhibit transcription in E. coli. Transcription is the first step of gene expression, when a copy of RNA is made from a DNA sequence.

After finding that CBR703 inhibited transcription in E. coli, the researchers ran the bacteria through a series of tests that allowed them to see where and when during transcription the inhibitor acted on the enzyme.

Transcription is a multi-step process in which the genetic information from DNA is transcribed, or written on, RNA. Transcription is key for all cellular processes. In this study, CBR703 inhibited the addition of nucleotides – individual units that make up an RNA molecule – thus keeping a new strand of RNA from forming.

"Knowing how a new antibiotic acts on its target takes the process of making new drugs to a new level, allowing for better understanding of a drug’s direct- and side-effects," she said. This new series of antibacterial compounds holds great promise for designing drugs specifically targeted to major classes of bacterial pathogens, such as those that cause pneumonia and tuberculosis.

"Whenever a new class of antibacterial compounds becomes available, it leads to a surge in enthusiasm in the medical community, since novel antibiotics can provide new treatments, or at least may provide new weapons against pathogenic bacteria that have developed resistance to other drugs," Artsimovitch said.

This research was supported by grants from the National Institutes of Health and the U.S. Department of Agriculture and in part by Cumbre, Inc. Artsimovitch has no link to Cumbre beyond the scope of this study.

Contact: Irina Artsimovitch; +1 (614) 292-6777; Artsimovitch.1@osu.edu

Irina Artsimovitch | Ohio State University
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>