Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saliva spits out information on chemical exposure

24.10.2003


Home testing of saliva to measure personal hormone levels is gaining popularity, with dozens of companies offering do-it-yourself, mail-in test kits. Battelle scientists at the Department of Energy’s Pacific Northwest National Laboratory envision a day when it may be nearly as easy to detect chemical exposure or even nerve gas poisoning — simply by analyzing a victim’s saliva. And the results would be almost immediate.



Using sophisticated mass spectrometry equipment at PNNL, researchers have been able to identify breakdown products of a common pesticide in the saliva of rats exposed to known amounts of the pesticide. The researchers are working now to develop a simpler, portable microanalytical sensor system to quickly diagnose pesticide exposure in humans and a modeling method than can estimate the dose. Researchers say the technology could be adapted to test for a variety of contaminants, including chemical warfare agents.

The research project began with an Environmental Protection Agency grant to study pesticide exposure in adults and children working or living near farms. The research team exposed rats to a common agricultural chemical and found traces in the saliva shortly after exposure.


“The fact that we were able to find the chemical in very low concentrations confirms that saliva can be a reliable, non-invasive method to monitor farm or industrial workers who are exposed routinely to potentially harmful pesticides,” said Jim Campbell, an analytical chemist working with mass spectrometers at PNNL.

Researchers believe saliva monitoring may be able to detect a broad range of chemical contaminants from ongoing occupational exposure, accidents or even acts of war and terrorism.

“The class of pesticides we are studying, organophosphates, are chemically similar and work on the same general principal as nerve gas,” said Charles Timchalk, a Battelle toxicologist at PNNL. “Both pesticides and nerve gases inhibit an enzyme called acetylcholinesterase. Without acetylcholinesterase, nerves, including those responsible for breathing, stop functioning.”

Chemical nerve agents also bind to and disrupt other enzymes, including one called butyrylcholnesterase. “Researchers at the laboratory have demonstrated that rat saliva contains a nearly pure population of this enzyme,” said Campbell. “This data strongly suggests that it’s possible to develop a portable device to yield immediate results from a small amount of saliva. Such a device might save lives in the event of a military or terrorist attack.”

Real-time diagnosis is the key, as some treatments for nerve gas poisoning are effective, if initiated in time. Typically, however, testing for chemical exposure requires drawing blood or collecting urine samples, which must then be sent to a laboratory. Results may be days or weeks away.

“If expanded to identify chemical warfare agents, saliva analysis would not only identify those who need medical treatment, but might also offer up forensic evidence against the attackers,” said Timchalk. “It might be possible to detect trace levels of the chemical agents in the saliva of a terrorist who handled the poisons before releasing them.”

The saliva monitoring technology under development at PNNL is being designed to provide immediate results and be simple enough to be operated in the field by technicians with little training.

“We have demonstrated that a biosensor linked to a hand-held electrochemical detector can identify the organophosphates in solution with a high degree of sensitivity,” said Yuehe Lin, a Battelle analytical chemist at PNNL. “The biosensor consists of electrodes coated with carbon nanotubes. The carbon nantotubes hold the enzymes, which are targeted to the organophosphate chemicals, and electricity is applied. If organophophates are present, there is a decrease in the electrical current that can be correlated to the amount of chemical present. The hand-held biosensor detection system will facilitate the on-site saliva monitoring of exposures to these pesticides.”

The Battelle team hopes to secure additional funding to study saliva testing and monitoring for nerve agents. Meanwhile they continue to develop the technology to assess exposure to agricultural pesticides.

Business inquiries on this or other areas of research at PNNL should be directed to 888-375-PNNL or inquiry@pnl.gov.

Pacific Northwest National Laboratory is a Department of Energy Office of Science research facility that advances the fundamental understanding of complex systems, and provides science-based solutions to some of the nation’s most pressing challenges in national security, energy and environmental quality. The laboratory employs more than 3,800 scientists, engineers, technicians and support staff, and has an annual budget of nearly $600 million. Battelle, based in Columbus, Ohio, has operated PNNL for the federal government since the laboratory’s inception in 1965.

Susan Bauer | PNNL
Further information:
http://www.pnl.gov/news

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>