Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vision-producing cells fail ’taste-test,’ treat key light-detecting molecules identically

23.10.2003


Johns Hopkins scientists have discovered that the eye’s vision-producing rods and cones cannot tell the difference between their respective light-detecting molecules. The findings appeared in a recent issue of Nature.



At the heart of the researchers’ side-by-side comparison is the quest to solve a fundamental mystery of vision: how rods and cones have such different sensitivities to light despite using very similar processes to detect it.

Rods function in near darkness, while rarer cones function in bright light, providing vibrant color vision. In each cell type, the process of forming vision begins when light activates a cell-specific molecule, called a visual pigment, and ends when the cell emits an electrical signal.


To set up the "taste test," the Hopkins researchers created frogs whose rods contained, in addition to their usual pigment, a pigment found only in cones. The researchers expected the rods to treat the two pigments differently -- picking up signals only from its native pigment and spurning the other -- or to behave a little like cones.

"Surprisingly, the cell’s response to light was identical regardless of which pigment was activated," says King Wai Yau, Ph.D., professor of neuroscience in Johns Hopkins’ Institute for Basic Biomedical Sciences. "It’s as though the label of ’rod’ pigment and ’cone’ pigment is gone. The pigments alone do not explain the cells’ functional differences."

Some scientists had speculated that the pigment defines a cell’s role in vision, making a rod, a rod or a cone, a cone. Until now, however, no experiments have measured whether starting the process with the "wrong" pigment affects the cell’s critical characteristics -- the size and shape of the electrical signals it produces.

Studying individual rods containing both the rod pigment, called rhodopsin, and a cone pigment (called human red cone pigment), the Johns Hopkins scientists discovered for the first time that rod machinery treats both pigments the same. The findings prove that functional differences between rods and cones stem in part from the cellular environments they offer, rather than inherent differences in their pigments, says Yau, who is also a Howard Hughes Medical Institute investigator.

Both pigments detect light by absorbing it and changing their structures in specific ways (called isomerization), thereby triggering events that generate an electrical signal. The pigment molecules then relax and eventually return to their original forms, ready to start the process anew.

Cone pigment relaxes 10 times faster than rod pigment, which led many scientists to assume that this timing difference would explain rods’ and cones’ different sensitivities. However, the Hopkins team showed that both pigments were "turned off" at the same time when in the same cell, well before either pigment relaxed, says Vladimir Kefalov, Ph.D., a postdoctoral fellow in neuroscience.

The real off-switch turns out to be addition of a phosphate group to the activated pigment, and subsequent binding by a protein called arrestin, says Yingbin Fu, Ph.D., a Howard Hughes postdoctoral fellow in neuroscience. Even though rods and cones each have their own phosphate-adding enzyme, the rod version recognizes the cone pigment as an equally appropriate target, says Yau. In separate experiments using a mutant version of the cone pigment that couldn’t be phosphorylated, the rod did in fact produce a longer signal.

Only one inherent characteristic of the cone pigment -- its instability -- seemed to contribute to rods’ and cones’ sensitivity differences. Unlike rod pigment, cone pigment spontaneously changes its shape even without exposure to light, causing cones to generate false signals that reduces their sensitivity. Through a number of calculations, Kafelov determined that, in primates, this cone pigment "noise" could account for roughly half of the normal sensitivity difference between cones and rods.


The experiments were funded by the National Institutes of Health and the Howard Hughes Medical Institute. Authors on the paper are Kefalov, Fu, Yau and Nicholas Marsh-Armstrong, all of Johns Hopkins. Marsh-Armstrong is also affiliated with the Kennedy Krieger Institute.

On the Web:
Nature, Oct. 2, 2003
http://www.nature.com/nature

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.nature.com/nature

More articles from Life Sciences:

nachricht Many cooks don't spoil the broth: Manifold symbionts prepare their host for any eventuality
14.10.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Diagnostics for everyone
14.10.2019 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>