Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retroviral protein triggers proliferation of immune cells

23.10.2003


Scientists here have found that a protein in the retrovirus known as human T-cell lymphotropic virus type 1 (HTLV-1) can cause immune cells to divide and proliferate, helping the virus spread through the body.


Michael Lairmore



The protein, known as p12, was formerly thought to be unimportant during infection, causing scientists to regard it as a nonessential “accessory gene.”

This new study, however, shows that the protein forces infected cells to produce interleukin 2 (IL-2), a substance that stimulates the growth and proliferation of immune cells known as T lymphocytes, or T cells, which are the virus’s chief target. The study was published in the Oct. 15 issue of the Journal of Virology.


“Our findings help explain why lymphocytes divide and proliferate in people following HTLV-1 infection,” says lead investigator Michael D. Lairmore, professor and chair of veterinary biosciences, professor of molecular virology and associate director for basic sciences at the Ohio State University Comprehensive Cancer Center. “The findings also support the view that this virus replicates mainly by causing infected cells to divide and proliferate rather than by generating more virus particles.”

The study provides insight into the biology of HTLV-1 and the changes lymphocytes undergo as they become cancerous. The findings also may lead to safer, more effective drugs to treat the leukemias, lymphoma, and autoimmune-like diseases caused by the virus.

HTLV-1 infects 15 to 25 million people worldwide, particularly in Japan and in the Caribbean region. It specifically attacks immune cells known as CD4 lymphocytes, where it inserts its genome, or genetic material, permanently into a chromosome. In some people the virus causes adult T-cell leukemia/lymphoma, a cancer that responds poorly to treatment and that can cause death within six months of diagnosis. In others, it causes crippling and painful autoimmune-like disorders.

Lairmore and a team of colleagues tested the function of p12 in both laboratory-grown lymphocytes known as Jurkat T cells, and in normal human T lymphocytes, known as peripheral blood mononuclear lymphocytes (PBMCs). Jurkat cells are commonly used for immunological studies, while PBMCs contain HTLV-1’s normal target cell.

Copies of the p12 gene were transferred into both cell types. Then the genes were activated as they would be during HTLV-1 infection, causing the cells to produce p12 and IL-2. After several days, the cultured cells produced twice the level of IL-2 compared to control cells, and the normal lymphocytes produced levels six-fold higher than controls.

“A similar two-to-six fold increase in IL-2 production by infected T cells during normal HTLV-1 infection in the body would lead to a significant increase in lymphocyte numbers in the blood,” says Lairmore.

“Overall, our evidence suggests that this protein plays a vital role in early HTLV-1 infection.”


Contact: Darrell E. Ward, (614) 293-3737; Ward-15@medctr.osu.edu

Darrell E. Ward | OSU
Further information:
http://researchnews.osu.edu/archive/htlvil2.htm
http://www.acs.ohio-state.edu/units/research/

More articles from Life Sciences:

nachricht New contents: Neuronal Parkinson inclusions are different than expected
26.06.2019 | Universität Basel

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>