Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who moved my cheese!?

21.10.2003


Researchers find that ’one sniff will do’ for odor discrimination



Rats inhabit a world of smells far beyond our poor powers to discriminate. Thousands of odors that smell the same to us, or that we cannot perceive at all, are quickly recognizable as distinct and meaningful odors to rodents and other animals in which the Nose Knows. But just how quick?

By measuring the speed of smell, researchers at Cold Spring Harbor Laboratory have now found that unlike humans, rats can tell two very similar odors apart with just one sniff. And because it’s not the Nose that Knows, but rather the brain, such studies of how animals can rapidly and accurately discriminate odors are revealing vital new information about how the human brain processes information, guides behavior, and even enables us to be consciously aware of our own (though less smelly) world, and our own selves.


"We are trying to understand how systems of neurons participate in the creation of perception, awareness, and behavior," says Cold Spring Harbor Laboratory neuroscientist Zach Mainen, who led the new study.

By exploring the neural mechanisms by which rodents use odors to guide their behavior, Mainen and his colleagues hope to uncover basic principles of brain function that will apply in many settings, including how our own brains work. But to get there, they needed to start out by measuring seemingly strange things such as how many sniffs a rat takes per second. The answer, according to the new study: about eight sniffs per second.

Believe it or not, the "eight sniffs per second" measurement has helped resolve a hotly debated issue in neuroscience. Researchers have previously suggested that the brain requires extra processing time to distinguish among the millions of different chemical signals that can be picked up by the nose. The new study, which appears in the November issue of Nature Neuroscience (advance online publication date: October 20), overturns this conventional wisdom that smell is a slow sense.

"We found that a rat gets a complete sense of an odor with each sniff. So the animal can reassess what it’s smelling quite rapidly, and alter its behavior accordingly. Therefore, compared with other forms of sensory perception, smell is a fast sense, not a slow one," says Mainen.

"Humans are far more attuned to the visual world, but the computations our brains carry out are probably not all that different than in rodents. The neural mechanisms that enable rodents to identify an odor in a single sniff are probably similar to those that help us take in an entire visual scene in a single glance. Moreover, the brains of both rats and humans display the same kind of rhythmic, information processing activity called a theta cycle, which controls many things."

Mainen and his colleagues are currently recording electrical signals from neurons in the brains of rats as they perform the odor discrimination task (see Background Information below). In this way, the researchers hope to learn more about information processing in the olfactory system, and to explore the neural basis of perception, decision-making, and other aspects of behavior.


###
Contact information for the Principle Investigator of the study:

Zach Mainen, Ph.D.
Assistant Professor
Cold Spring Harbor Laboratory
e-mail: mainen@cshl.edu
tel: 516-367-8822

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu/public/SCIENCE/mainen.html

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>