Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An efficient and simple method for varietal identification of the cherry tree

10.10.2003


Professor Ana Wünsch Blanco has presented her PhD, at the Public University of Navarre, on the application of molecular technologies in the identification and enhancement of the cherry fruit tree.



The application of molecular technologies in the identification and enhancement of the cherry tree is not something new. In fact, the varietal identification of fruit species has been accompanied, in the past few years, by the appearance of DNA markers. This has enabled an investigation of the genome of each variety, independently of the state of development and the phenological state of the tree.

Other research has used these techniques for the identification of peach trees. The significance of the study in the cherry tree arises from the fact that this is one of the economically important stone-fruit species and, moreover, Spain is one of the most important world producers of this fruit. However, this importance is not reflected in the exhaustive studies on the identification of genotypes of the different varieties of the species.


In this paper, the researcher develops an efficient method for the identification of cherry varieties based on microsatellite-type molecular markers.

More than 100 varieties of cherry

Once the method is designed it is used to identify the collection of cherry tree varieties of the Zaragoza Food Research Service (SIA)where Ana Wunsch is currently working. Moreover, the identification of 28 genotypes of the Extremadura Regional Government collection of cherry tree patterns in Barrado (Cáceres) and another 17 genotypes from the Zaragoza SIA collection. The results have been very good given that current methods for the varietal identification of the cherry tree have been accelerated and optimised.

The PhD also includes a study of the pollen-pistil incompatibility feature in the cherry tree. According to this, the varieties of auto-incompatible cherry trees require the presence of pollinating trees, pollen donors compatible for production and, therefore, this compatibility feature and the acquisition of auto-compatible varieties is an important aim for improvement in this species.

A system has been established for the identification of incompatibility groups in this species and for the identification of a auto-compatible mutant which may be used in species enhancement programmes. This has made easier and has improved the establishment of protocols for the identification and early selection of auto-compatibility and its subsequent transference to the production sector.

Genetic similitude by geographic origin

This research has enabled the establishment of profiles of genotypes of the various varieties and patterns of the three above-mentioned collections and the study of the genetic similitude between them. Thus, it has been observed that the oldest varieties of cherry tree used as parent lines in the improvement programmes are grouped together for genetic similitude into two groups which correspond to their geographic origin: varieties originating in southern Europe and varieties originating in Central Europe and North America.

These results concur with the way in which varieties have been selected at a local level and with the movement of vegetable material of this species, given that it was mainly the Central European varieties that were taken to North America.

Moreover, with respect to the traditional varieties from the Jerte Valley in Extremadura, researchers have observed that are more genetically similar to each other than other varieties introduced at a later date, indicating that a group of local, autochthonous varieties exists which can be distinguished from the rest of the cultivated varieties which have been selected empirically by farmers in the area over the centuries. Knowledge and identification of this germoplasm will be of use for its future conservation.

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Iñaki Casado Redin | Basque research
Further information:
http://www.basqueresearch.com
http://www.unavarra.es

More articles from Life Sciences:

nachricht Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection
31.03.2020 | Forschungsverbund Berlin

nachricht A 'cardiac patch with bioink' developed to repair heart
31.03.2020 | Pohang University of Science & Technology (POSTECH)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>