Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue team solves structure of West Nile virus

10.10.2003


Purdue University biologists have determined the structure of the West Nile virus, a development that could greatly augment our understanding of the virus’ life cycle.


This figure shows a surface-shaded image of the West Nile virus particle produced by Purdue University biologists using cryoelectron microscopy. The surface is composed of proteins that enable the virus to bind with and invade a host cell. The particle is approximately 50 nanometers in diameter, or about 1/1000th of the width of a human hair. (Purdue Department of Biological Sciences image)


This image shows the orientation of the envelope protein molecules that compose the surface of a West Nile virus particle. The major surface protein is composed of three domains color-coded pink, yellow and blue. The proteins self-assemble in a host cell, forming a well-organized geometric shape. Knowledge of the proteins’ structure could help scientists in the effort to develop antiviral agents. (Purdue Department of Biological Sciences image)



Using cryoelectron microscopy and advanced imaging techniques, the Purdue team has determined the orientation of the major surface proteins in a West Nile viral particle. Because these proteins are instrumental in allowing the virus to bind to and invade a host cell, the research could be a step forward in combating the deadly mosquito-borne disease.

"We can now clearly understand how these proteins interact with one another," said Richard J. Kuhn, a professor of biological sciences in Purdue’s School of Science. "We can’t cure West Nile yet, but we can now start thinking about how to interfere with these interactions, which could be a key to stopping the infection’s progress."


The team’s work appears in Friday’s (10/10) edition of Science.

Viruses are among the smallest of biological entities, containing only essential amounts of genetic material that allow a virus to take over a victim cell’s functions. As West Nile develops inside a host cell, several layers of protein molecules assemble themselves around the genetic material, forming a protective shell. The outer layer of proteins is often arranged in an intricate pattern of interlocked molecules that can give the particle’s surface the appearance of a lattice or, in the case of West Nile, the fabric of a herringbone jacket. When the mature West Nile virus particle emerges, it is these surface proteins that interact with another cell’s surface so the next invasion cycle can begin.

"The West Nile virus is formed from three protein types," Kuhn said. "After the virus assembles in its host cell, these protein molecules fit together like a jigsaw puzzle and form a well-ordered symmetrical particle. From the structure, we now know, essentially, how the major sets of protein molecules interlock with each other chemically. Armed with this knowledge, scientists might now conceive of ways to interrupt the viral assembly process."

Adding to the knowledge base is the previous work the group has done with flaviviruses, the viral family that causes diseases including West Nile, dengue and yellow fever. The group, which is composed of researchers from Kuhn’s lab, as well as the labs of Michael Rossmann and Timothy Baker, has described the structure of other flaviviruses before (see related articles below). While this is the first time West Nile’s structure has been described, Kuhn said the group’s past work could assist with science’s understanding of this particular viral family.

"What we already know from studying other flaviviruses could give us a leg up understanding West Nile’s behavior," he said. "Dengue, for example, has a very similar structure to West Nile’s, but its surface features are sufficiently different that comparisons could help shed light on how West Nile operates."

Since it first appeared in New York City in 1999, West Nile virus has spread to 44 states, hitting the northern plains and eastern Rocky Mountains particularly hard. So far this year, there have been more than 4,400 cases and 84 deaths nationwide. The Centers for Disease Control and Prevention maintains a Web site with information on the spread of West Nile and its prevention.

While Kuhn is hopeful that the group’s work will add to the effort to contain the disease, he said much additional work will be required to understand the virus’ life cycle on the molecular level.

"Our structural map now shows only the general orientation of the proteins," he said. "What we need now is to include what you might think of as an ’inset map’ – an even smaller-scale picture that details the structure of each of the three protein varieties that make up the virus particle. Then researchers will have more insight into how the proteins bond with cells and each other."

This closer look represents the next step for Purdue’s structural virology group, which has recently received new support from the National Institutes of Health in the form of grants totaling nearly $18 million. These grants support basic research on viral infectious diseases, including West Nile.

"We currently have a 17-angstrom resolution structure," Kuhn said. "We hope to use our NIH support to get down to the 9-angstrom scale or better, as this would give us details on the individual protein molecules as well as other proteins in the virus."

The work on the West Nile virus was performed by Suchetana Mukhopadhyay, Bong-Suk Kim and Paul R. Chipman, who are associated with the labs of Rossmann and Kuhn. The group is part of the Markey Center for Structural Biology, which consists of laboratories that use a combination of cryoelectron microscopy, crystallography, nuclear magnetic resonance, biochemistry and molecular biology to elucidate the processes of viral entry, replication and pathogenesis. Approximately 100 research scientists, including 50 graduate students, comprise the Markey Center.

This work was funded by the National Institute of Allergy and Infectious Diseases.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Richard J. Kuhn, (765) 494-1164, kuhnr@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031009.Kuhn.westnile.html

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>