Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software tackles protein pathways

26.09.2003


When biologists want to compare different sequences of DNA or protein, it’s as simple as plugging the information into a browser and pressing enter. Within 15 seconds, an online software tool contrasts one sequence of DNA with up to 18 million others catalogued in public databases. Now, a software tool developed by Whitehead Institute scientists promises to apply this same computational muscle to the far more intricate world of protein interaction networks, giving researchers a new view of the complexities of cellular life.



DNA sequencing technologies allow scientists to easily identify genes and their nucleotide building blocks -- linear strings of information represented by the letters A, C, T and G. The wide accessibility of these technologies has enabled both companies and academic labs to assemble huge libraries of genomic information. Computer engineers, in turn, have helped scientists navigate these oceans of data through tools such as BLAST, the primary software platform that scientists use to compare protein and DNA sequences. However, many researchers believe that the next phase of genomics research will be to map out interaction networks -- the cell’s internal wiring system through which genes and proteins communicate.

"The 80s and 90s were about sequences," says Trey Ideker, a former Whitehead Fellow who recently was named an assistant professor of bioengineering at University of California, San Diego. "Now we’re starting to see newer types of technologies -- like microarrays -- that allow us to look at how a cell, in its entirety, responds to drugs and other kinds of stimuli. These technologies will revolutionize biology." Already, researchers like Whitehead’s Rick Young are beginning to assemble libraries of cellular network pathway maps using microarrays.


"But there’s a problem that’s not yet addressed," says Whitehead Fellow Brent Stockwell. "What if I’ve identified a whole protein interaction network in one type of organism and I want to see if a similar network exists in other species?" Until recently, there was no way to do this. It’s a need that Stockwell and Ideker hope their new software tool, called PathBLAST, will meet.

At the core of PathBLAST is a program that can represent these interaction networks mathematically. The program is based on algorithms that scientists use to represent chemical structures. "An interaction network, in its form, is essentially like a chemical structure," says Stockwell, "and fortunately there are already a great set of tools for representing chemical structures." Developed by Brian Kelley, a software engineer in Stockwell’s lab, this algorithm translates all the information from an entire interaction network into a linear code. Using an interface developed by Whitehead’s Biocomputing group, PathBLAST can rapidly compare interaction networks from different organisms.

In research published this week in the online edition of the Proceedings of the National Academy of Sciences, Ideker and Stockwell took the entire genomes from the yeast S. cerevisiae and the bacterium H. pylori and compared the interaction networks in both organisms. The software crunched the numbers and displayed the results in seconds. The turnaround time was impressive considering the scope of the effort: the bacterium contained 1,465 interactions among 732 proteins: the yeast contained 14,489 interactions among 4,688 proteins.

The study revealed that one pathway critical in catalyzing DNA replication and another one instrumental in protein degradation were conserved in both organisms as a single network. "What was surprising was that there was one network, not two," Ideker says. "So now the question is, ’What’s the attraction between these two complexes?’"

At the moment, there’s no clear answer. But as labs continue to do these types of experiments, there eventually could be a huge payoff in comparing such things as viral networks to human networks, possibly allowing drug companies to develop products that target cellular pathways unique to viruses.

As for other applications, it’s still too early to tell, Ideker says. "It’s like asking in 1985, ’What’s the impact of gene sequencing going to be?’ We’re trying to get the basic mechanisms in place to eventually do these kinds of comparisons."

Kelli Whitlock | EurekAlert!
Further information:
http://www.pathblast.org.
http://www.wi.mit.edu/home.html

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>