Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control of Gene Expression Demonstrated

15.09.2003


Intervention in the process whereby genes are turned "on" or "off" has been demonstrated by scientists at the Hebrew University-Hadassah Medical School. The work offers promise for future genetic treatment to control undesirable tissue growth, such as in cancer.



The experimental work of the group is described in a recent article in the journal, Nature Genetics. The researchers succeeded in showing how manipulation of the methylation process in animals can turn genes which are normally inactive into active ones.

Early in the development of the embryo in the uterus, a methyl "cap" is attached to most of the genes in the nuclei of the dividing cells, with the exception of those "housekeeping" genes which are present in every cell and are necessary to keep them functioning.


This methylation process prevents the tissue-specific genes (those which produce tissues such as liver, heart, muscle, etc., cells) from expressing themselves (becoming activated) every time there is cell division. Those genes are selectively unmethylated only at various stages and for specific periods, as required, in the normal development process of the organism.

The Hebrew University-Hadassah Medical School scientists were successful in showing that methylation works by affecting chromosome structure. Unmethylated genes remain open and accessible, while methylation causes genes to be packaged in a closed form - explaining why they are inactive. In their experimental work, the scientists were able to artificially "open" or unmethylate certain genes - that is, turn them "on" -- and keep them that way for as long as desired.

This can have consequences, for example, in controlling tumorous growths. In the latter stages of cancerous spread, those genes which normally control unwanted cell growth are abnormally shut down. By being able to keep such beneficial genes active, it would be possible to halt the tumors’ progress. Such an achievement, however, has yet to be demonstrated in laboratory experiments.

The authors of the article on methylation and its manipulation are: Howard Cedar, the Harry and Helen L. Brenner Professor of Molecular Biology at the Hebrew University-Hadassah Medical School, together with graduate students Tamar Hashimshony and Jianmin Zhang; senior researcher Dr. Ilana Keshet of the Medical School; and Dr. Michael Bustin of the National Cancer Institute, U.S. National Institutes of Health, in Bethesda. MD.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration
14.11.2018 | Technische Universität München

nachricht NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure
14.11.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

NIH scientists combine technologies to view the retina in unprecedented detail

14.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>