Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control of Gene Expression Demonstrated

15.09.2003


Intervention in the process whereby genes are turned "on" or "off" has been demonstrated by scientists at the Hebrew University-Hadassah Medical School. The work offers promise for future genetic treatment to control undesirable tissue growth, such as in cancer.



The experimental work of the group is described in a recent article in the journal, Nature Genetics. The researchers succeeded in showing how manipulation of the methylation process in animals can turn genes which are normally inactive into active ones.

Early in the development of the embryo in the uterus, a methyl "cap" is attached to most of the genes in the nuclei of the dividing cells, with the exception of those "housekeeping" genes which are present in every cell and are necessary to keep them functioning.


This methylation process prevents the tissue-specific genes (those which produce tissues such as liver, heart, muscle, etc., cells) from expressing themselves (becoming activated) every time there is cell division. Those genes are selectively unmethylated only at various stages and for specific periods, as required, in the normal development process of the organism.

The Hebrew University-Hadassah Medical School scientists were successful in showing that methylation works by affecting chromosome structure. Unmethylated genes remain open and accessible, while methylation causes genes to be packaged in a closed form - explaining why they are inactive. In their experimental work, the scientists were able to artificially "open" or unmethylate certain genes - that is, turn them "on" -- and keep them that way for as long as desired.

This can have consequences, for example, in controlling tumorous growths. In the latter stages of cancerous spread, those genes which normally control unwanted cell growth are abnormally shut down. By being able to keep such beneficial genes active, it would be possible to halt the tumors’ progress. Such an achievement, however, has yet to be demonstrated in laboratory experiments.

The authors of the article on methylation and its manipulation are: Howard Cedar, the Harry and Helen L. Brenner Professor of Molecular Biology at the Hebrew University-Hadassah Medical School, together with graduate students Tamar Hashimshony and Jianmin Zhang; senior researcher Dr. Ilana Keshet of the Medical School; and Dr. Michael Bustin of the National Cancer Institute, U.S. National Institutes of Health, in Bethesda. MD.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
05.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
05.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>