Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coal-eating bacteria may improve methane recovery

12.09.2003


Scientists at the U.S Department of Energy’s Brookhaven National Laboratory are exploring the use of bacteria to increase the recovery of methane, a clean natural gas, from coal beds, and to decontaminate water produced during the methane-recovery process.



Methane gas, which burns without releasing sulfur contaminants, is becoming increasingly important as a natural gas fuel in the U.S. But the process of recovering methane, which is often trapped within porous, unrecovered or waste coal, produces large amounts of water contaminated with salts, organic compounds, metals, and naturally occurring radioactive elements. "Our idea is to use specially developed bacteria to remove the contaminants from the wastewater, and also help to release the trapped methane," says Brookhaven chemist Mow Lin.

Lin’s team has developed several strains of bacteria that can use coal as a nutrient and adsorb or degrade contaminants. They started with natural strains already adapted to extreme conditions, such as the presence of metals or high salinity, then gradually altered the nutrient mix and contaminant levels and selected the most hardy bugs (for more, see: http://www.bnl.gov/bnlweb/pubaf/pr/2001/bnlpr121101.htm).


In laboratory tests, various strains of these microbes have been shown to absorb contaminant metals, degrade dissolved organics, and break down coal in a way that would release trapped methane. The use of such microbe mixtures in the field could greatly improve the efficiency and lower the associated clean-up costs of coal-bed methane recovery, Lin says.

To learn more about this work, see the talk given by Lin during the Division of Fuel Chemistry’s "Synthetic Clean Fuels from Natural Gas and Coalbed Methane: 30 Years Progress Since the First Oil Crisis" session on Thursday, September 11, 2003, at 3:30 p.m. at the Jacob Javits Convention Center, Room 1A13. This research was funded by grants for high-school and undergraduate student research at Brookhaven Lab from Brookhaven Science Associates and DOE’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/
http://www.bnl.gov/bnlweb/pubaf/pr/2001/bnlpr121101.htm

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>