Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Fly Pheromone Receptor First Ever Discovered Linked to Specific Sexual Behavior

11.09.2003


Hubert Amrein, Ph.D., Assistant professor of genetics and microbiology


For the first time in any animal, Duke University Medical Center researchers have linked a single pheromone receptor in the fruit fly to a specific sexual behavior.

Pheromones are chemical signals exuded by many animals -- including humans -- that serve as stimuli to evoke behavioral responses in other individuals of the same species. Pheromones often attract members of the opposite sex and provide important cues during courtship and mating.

Yet little is known about pheromone receptors, which are the protein switches nestled in cell membranes that trigger responses to pheromones, said Duke Medical Center geneticist Hubert Amrein, Ph.D., senior author of the study.



Now, he and co-author Steven Bray, also of Duke, report that male Drosophila fruit flies lacking one type of taste receptor have difficulty recognizing females. Although the males initiate the courtship ritual, the flies’ mating dance stalls when they apparently fail to detect the proper chemical cue from females. The sexually aberrant flies otherwise behaved normally, the researchers report in the Sept. 11, 2003, issue of Neuron.

"Scientists have been chasing pheromone receptors in animals for a long time with little success," Amrein said, noting that although putative receptors have been found, tying those to specific behaviors had remained a major challenge. "Now, we have identified a receptor and a very specific aspect of courtship for which it is required."

The work was funded by a grant from the National Institutes of Health.

Like mammals, insects display complex mating behaviors, many of which are triggered automatically in response to pheromones or other stimuli, Amrein said. Although the same principles likely underlie the behavior in all animals, he added, flies’ simpler nervous system makes them an ideal model for study.

Courtship in Drosophila includes a regular sequence of behaviors, which are critical for mating, Amrein explained. First, a male identifies a female visually. The male then approaches the female and touches her with his forelegs -- which contain one of the flies’ taste organs -- in a behavior known as tapping. After detecting pheromones from the female, the male produces a courtship song through rapid wing vibrations. The receptive female slows, allowing the male to investigate further with his labellum, the fly equivalent of a tongue. Finally, the male fly begins bending its abdomen as required for copulation, and the two mate.

In their search for pheromone receptor genes, the researchers explored the location of some 25 of 70 known taste receptors on the fly’s body. They found that one such candidate pheromone receptor, encoded by a gene called Gr68a, showed up only on the forelegs that males use in the tapping stage of courtship. Also, found the researchers, the activity of the Gr68a gene was governed by a gene that controls many aspects of sexual differentiation in flies.

The researchers found that male flies lacking the neurons that express the Gr68a receptor spent less time courting females and, as a result, mated significantly less often than normal flies did. Those deficient flies that did mate successfully took twice as long to do so in comparison to intact males.

Also, found the researchers, males lacking the Gr68a-expressing neurons initiated courtship more often than normal but the ritual stalled after the tapping stage, when males apparently failed to receive the pheromone cue from females. Flies lacking only Gr68a showed the same dysfunction as those lacking the neurons completely, a result which links the behavior directly to the taste receptor, Amrein said.

"It’s quite remarkable that a single gene receptor, expressed in just a few cells of the entire male fly, plays such a crucial role in the courtship process," Amrein said. "When you knock out the function of the gene, the flies show a serious mating deficit."

Although an earlier study found that mice lacking 16 genes thought to include pheromone receptors exhibited abnormal sexual and aggressive behavior, this is the first study to clearly link a single pheromone receptor to a specific mating behavior, Amrein said.

Besides chemical sensing, courtship in flies involves visual and auditory cues. Therefore, Amrein said, the finding in fruit flies is a step toward understanding how the brain integrates different kinds of sensory input and translates those signals into complex behaviors critical to reproduction and survival.

Kendall Morgan | Duke Med News
Further information:
http://dukemednews.org/news/article.php?id=7022

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>