Designing a better catalyst for ’artificial photosynthesis’

Scientists studying the conversion of carbon dioxide (CO2) to carbon monoxide (CO) — a crucial step in transforming CO2 to useful organic compounds such as methanol — are trying to mimic what plants do when they convert CO2 and water to carbohydrates and oxygen in the presence of chlorophyll and sunlight. Such “artificial photosynthesis” could produce inexpensive fuels and raw materials for the chemical industry from renewable solar energy. But achieving this goal is no simple task.

“Nature has found a way to do this over eons,” says Etsuko Fujita, a chemist at the Department of Energy’s Brookhaven National Laboratory. “It’s very complicated chemistry.”

Nature uses chlorophyll as a light absorber and electron-transfer agent. However, chlorophyll does not directly react with CO2. If you take it out of the plant and place it in an artificial system, it decomposes rather quickly, resulting in only a small amount of CO production.

So Fujita and others trying to mimic photosynthesis have turned to artificial catalysts made from robust transition metal complexes such as rhenium complexes. These catalysts absorb solar energy and transfer electrons to CO2, releasing CO. But until now, no one had explained how these processes work in detail. By studying these reactions over very short and long timescales (ranging from 10-8 seconds to hours), Fujita and her colleagues at Brookhaven have discovered an important intermediate step. A most intriguing result is the involvement of two energetic metal complexes to activate one CO2 molecule. Without CO2, the complexes dimerize much more slowly than expected.

The Brookhaven scientists’ work, incorporating a combined experimental and theoretical approach, may help to explain why the reaction proceeds so slowly, which may ultimately contribute to the design of more efficient catalysts.

Fujita will present a talk on this work, which will be published in the Oct. 1 Journal of the American Chemical Society, during the “Organometallic Catalysis” session on Tuesday, September 9, 2003, at 2:30 p.m. in the Jacob Javits Convention Center, room 1A29. This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences at DOE’s Office of Science.

Media Contact

Karen McNulty Walsh EurekAlert!

More Information:

http://www.bnl.gov/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors