Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows critical role for steroids in insect embryonic development

05.09.2003


A study conducted by University of Utah genetics researchers shows that the steroid hormone ecdysone controls an important phase in the embryonic development of insects, providing an unexpected parallel with the role of the hormone in controlling metamorphosis. The study’s findings also give scientists new insights into how steroids control maturation in higher organisms.



Carl S. Thummel, Ph.D., a Howard Hughes Medical Institute investigator and professor of human genetics at the University of Utah School of Medicine, said that although other studies have established a critical role for ecdysone in controlling insect metamorphosis, very little was known about roles for the hormone during embryonic development.

To find the answer, Thummel and Tatiana Kozlova, a Howard Hughes Medical Institute research associate, looked at the activation pattern of the receptor for ecdysone. They found that this receptor is highly activated in an extraembryonic tissue called amnioserosa, a tissue that does not itself form part of the embryo, but is nonetheless required for embryonic development. Thummel said the source of ecdysone in the early embryo, prior to the development of the insect endocrine organ, has always baffled scientists. "Our findings suggest that the earliest source of hormone is the amnioserosa," he said, "although other sources are likely to contribute at later times."


In addition, Kozlova and Thummel found that disruption of ecdysone signaling resulted in defects in major morphogenetic movements--germband retraction and head involution--that were known to be dependent on the amnioserosa.

These processes convert the body plan from a nondescript embryo to a larva with distinct segments, in preparation for the next stage of development.

This role for ecdysone is unexpectedly similar to the role that the hormone plays in converting the body plan of the larva into an adult insect during metamorphosis, uncovering a new hormone-dependent phase in the insect life cycle.

To explain the importance of the amnioserosa, Thummel compared it with the placenta in mammals. "Like the placenta, the amnioserosa is not a part of the embryo and yet it is a critical source of steroids."

Thummel said the study is significant to geneticists in understanding how steroid hormones control cell movements and maturation in general. It also has implications for agrochemical companies in the development of effective pesticides.

The research, funded by the Howard Hughes Medical Institute, was conducted over a two-year period. Findings will be posted on Science Express, a feature of the online version of Science magazine, on Sept. 4. It will be published in the magazine at a later date.


For more information, contact:
Carl Thummel, U of U Department of Human Genetics, 801-581-2937, OR Cindy Fazzi, U of U Health Sciences Center Office of Public Affairs, 801-581-7387.




Cindy Fazzi | EurekAlert!
Further information:
http://www.uuhsc.utah.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>