Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover early warning system for copper toxicity

05.09.2003


Findings could influence design of anticancer and antimicrobial drugs

Chemists and biologists at Northwestern University have acquired new insight into how a specialized sensor protein, which acts as an early warning system, detects dangerous amounts of the "coinage metals" -- silver, gold and copper -- inside cells. For the first time, researchers can explain this important mechanism at the atomic level.

The findings, to be published Sept. 5 in the journal Science and recently published online by the Journal of the American Chemical Society, should improve our knowledge of diseases related to copper metabolism and influence the design of anticancer and antimicrobial drugs, and may lead to better methods for removing toxic metals from the environment.



By studying the inorganic chemistry of the bacterium E. coli, a research team led by Thomas V. O’Halloran, professor of chemistry at Northwestern, established the molecular and structural basis for the cell’s early detection of miniscule amounts of copper. The work was done in collaboration with Alfonso Mondragon, professor of biochemistry, molecular biology and cell biology at Northwestern, and James E. Penner-Hahn, professor of chemistry at the University of Michigan.

Having determined the structures of copper-, silver- and gold-bound forms of the metalloregulatory protein CueR, the researchers were able to show the protein’s extraordinary sensitivity to copper as well as how the cell distinguishes copper from other metals, such as gold and silver.

"Metals are absolutely essential to the healthy functioning of all cells in the human body," said O’Halloran. "But metals are high-maintenance nutrients. They are finicky and can be particularly destructive if not managed by the cell in the right way. Cells must protect themselves against excess amounts."

O’Halloran likened the cell to a city in which metal ions are similar to important and reactive fuels that must be imported and then carefully delivered from one part of the city to another. Reactive metals such as copper have the potential to catalyze runaway reactions that could harm the cell, much as a series of explosions could damage critical systems in a city. Understanding how a cell properly deals with copper and other potentially toxic metals will aid biomedical researchers in understanding what happens when things go awry in cancer and neurodegenerative disorders, such as Wilson’s, Menkes and Lou Gehrig’s diseases and possibly Alzheimer’s disease.

"Metals are at the center of many emerging problems in health, medicine and the environment," said O’Halloran.


In addition to O’Halloran and Mondragon, other authors on the Science paper are Anita Changela (lead author), Kui Chen, Yi Xue, Jackie Holschen and Caryn Outten, from Northwestern University.

O’Halloran and Penner-Hahn are joined by Kui Chen (lead author), from Northwestern University, and Saodat Yuldasheva, from the University of Michigan, on the paper in the Journal of the American Chemical Society.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>