Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC researchers identify protein crucial to gene silencing

03.09.2003


A cellular protein identified by scientists at the University of North Carolina at Chapel Hill may be the crucial molecular element for gene silencing.



The research findings, published Aug. 29 in the science journal Molecular Cell, add important knowledge to the understanding of epigenetic signals. These chemical signals affect the modulation of gene expression - activation or repression - throughout the genome.

Studies at UNC and elsewhere have shown that epigenetic phenomena underpin the shutting down of one copy of the X chromosome occurring in female mammals, and parental "imprinting" - in which a gene’s activity depends on whether it’s inherited from the mother or father. During development, the expression of whole sets of genes must be repressed, or silenced, after their proteins set the body pattern.


One such epigenetic event is histone methylation, the addition of one or more methyl groups to lysine, one of the amino acids that make up the "tail" domain of histone proteins. Within the cell nucleus, spiraling strands of DNA are wrapped tightly around four core histone proteins and then fold to form a densely packed structure called chromatin. This complex of nucleic acids and proteins packages DNA into higher order structures, ultimately forming a chromosome.

The chemical modification of histone tails can alter chromatin structure, loosening or tightening it, which in turn influences the expression of adjacent genes. In the journal article, a study team led by Dr. Yi Zhang, assistant professor of biochemistry and biophysics in UNC’s School of Medicine and a member of UNC’s Lineberger Comprehensive Cancer Center, reported having identified for the first time a protein that directly regulates lysine methylation on the core histone protein, H3, in a way that represses gene activity.

"We have found the first molecule, the first gene product, that can regulate methylation," Zhang said.

In earlier research, Zhang identified a catalytic subunit associated with lysine methylation. This is the murine (mouse) enzyme ESET and its human homologue SETDB1. However, subsequent studies showed that such methylation might not be enough by itself to trigger gene silencing.

The newly discovered murine regulatory protein is called "mAM." Its human equivalent, or homologue, is "hAM." Stimulated by this protein, the state of methylation of lysine-9 on H3 that’s produced by the enzymatic subunit is made more complex - moving from dimethylation, the addition of two methyl groups, to trimethylation, the addition of three. In this new state, lysine-9 methylation becomes the signal for gene repression.

While the catalytic subunit alone can methylate a particular lysine residue on H3, in this case lysine-9, gene silencing occurs only when the lysine is methylated to the trimethyl state, Zhang said.

"The catalytic subunit by itself can have enzymatic activity, but not enough potency to repress gene expression," Zhang said. "Now we have demonstrated both in vitro and in vivo that gene repression is dependent on trimethylation." Zhang and his team are studying the biological significance of their discovery. "We have some indications that it’s important for apoptosis, programmed cell death. We’re also studying chromatin epigenetics with a view toward determining if they play a role in the ability of stem cells to commit to a specific lineage."

Along with Zhang, UNC co-authors of the report include Drs. Hengbin Wang and Li Xia and doctoral student Ru Cao. Other co-authors are Woojin An and Robert G. Roeder of Rockefeller University; Hediye Erdjument-Bromage and Paul Tempst of Memorial Sloan-Kettering Cancer Center in New York; and Bruno Chatton of CNRS-INSERM, in Strasbourg, France.


The research was supported by a grant from the National Institute of General Medicine, a component of the National Institutes of Health.

Note: Contact Zhang at (919) 843-8225 or yi_zhang@med.unc.edu.
School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

By LESLIE H. LANG
UNC School of Medicine

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht New gene potentially involved in metastasis identified
26.03.2019 | Institute of Science and Technology Austria

nachricht Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity
26.03.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>