Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth bioengineers develop humanized yeast

29.08.2003


Bioengineers at Dartmouth have genetically engineered yeast to produce humanized therapeutic proteins to address the manufacturing crunch currently confronting the biopharmaceutical industry. Reported in this week’s issue of Science, the researchers have re-engineered the yeast P. pastoris to secrete a complex human glycoprotein--a process offering significant advantages over current production methods using mammalian cell lines, according to the researchers.

The study, titled "Production of Complex Human Glycoproteins in Yeast," is one result of a collaboration between researchers at Dartmouth’s Thayer School of Engineering and GlycoFi, Inc., a biotech company located in Lebanon, New Hampshire. Founded in the spring of 2000 by Dartmouth engineering professors Tillman Gerngross and Charles Hutchinson, GlycoFi is advancing technology for the production of humanized proteins using fungal-based expression systems.

"For the first time, we have shown that yeast can be used to produce a complex human glycoprotein," says Professor Gerngross. "This technology has the potential to revolutionize the way therapeutic proteins are made--better, cheaper, faster, safer--and offer a level of control over the quality of the end product that has never existed before."



Proteins for pharmaceuticals must be manufactured by living cells. These cells are genetically engineered to produce (or express) proteins that mimic the ones synthesized by humans. These proteins can then be used to treat diseases ranging from cancer and multiple sclerosis to hemophelia and renal disease.

Current production of these therapeutic proteins, however, is limited by capacity due to rapid growth in the discovery of protein-based therapies--to the point that some approved drugs cannot be produced in adequate amounts, and still others are not making it into commercialization due to cost-prohibitive production methods.

"This development is very timely considering the production capacity bottleneck that’s facing today’s biomanufacturing industry," notes Hutchinson, CEO of GlycoFi and Dean Emeritus of Thayer School.

The Dartmouth researchers genetically engineered the yeast P. pastoris to perform a series of sequential reactions (pathways) that mimic the processing of proteins in humans. After eliminating non-human pathways from the yeast, five genes were inserted causing the yeast to construct a new secretion pathway that synthesizes human-like glycoprotein structures of superior quality.

"The protein structures we are seeing in our yeast are of a purity and uniformity unprecedented in biopharmaceutical manufacturing," said Stefan Wildt, Director of Strain Devlopment at GlycoFi, and one of the authors of the paper. "This makes it possible to harness both the inherent advantages of fungal protein expression systems and the potential to significantly increase pharmaceutical production capacities, therefore ultimately improving patient access to life-saving drug therapies."

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht Researchers discover vaccine to strengthen the immune system of plants
24.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Brain-cell helpers powered by norepinephrine during fear-memory formation
24.01.2020 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>