Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Chemists Develop Self-Assembling Silicon Particles

26.08.2003


A First Step Toward Robots the Size of a Grain of Sand


Image of smart dust particles surrounding a drop of hydrophobic liquid in water
Credit: Jamie Link, UCSD



Chemists at the University of California, San Diego have developed minute grains of silicon that spontaneously assemble, orient and sense their local environment, a first step toward the development of robots the size of sand grains that could be used in medicine, bioterrorism surveillance and pollution monitoring.

In a paper to be published in September in the Proceedings of the National Academy of Sciences, which will appear in the journal’s early on-line edition this week, Michael Sailor, a professor of chemistry and biochemistry at UCSD, and Jamie Link, a graduate student in his laboratory, report the design and synthesis of tiny silicon chips, or “smart dust,” which consist of two colored mirrors, green on one side and red on the other. Each mirrored surface is modified to find and stick to a desired target, and to adjust its color slightly to let the observer know what it has found.


“This is a key development in what we hope will one day make possible the development of robots the size of a grain of sand,” Sailor explains. “The vision is to build miniature devices that can move with ease through a tiny environment, such as a vein or an artery, to specific targets, then locate and detect chemical or biological compounds and report this information to the outside world. Such devices could be used to monitor the purity of drinking or sea water, to detect hazardous chemical or biological agents in the air or even to locate and destroy tumor cells in the body.”

To create the smart dust, the researchers use chemicals to etch one side of a silicon chip, similar to the chips used in computers, generating a colored mirrored surface with tiny pores. They make this porous surface water repellent, or hydrophobic, by allowing a chemical that is hydrophobic to bind to it. They then etch the other side of the chip to create a porous reflective surface of a different color and expose the surface to air so that it becomes hydrophilic, or attractive to water.

Using vibrations, they can break the chip into tiny pieces, each about the size of the diameter of a human hair. Each piece is now a tiny sensor with opposite surfaces that are different colors, with one attracted to water and one repelled by water and attracted to oily substances.

When added to water, the “dust” will align with the hydrophilic side facing the surface of the water and the hydrophobic side facing toward the air. If a drop of an oily substance is added to the water, the dust surrounds the drop with the hydrophobic side facing inward. In addition to this alignment, which will occur in the presence of any substance that is insoluble in water, a slight color change occurs in the hydrophobic mirror. The degree of this color change depends on the identity of the insoluble substance. The color change occurs as some of the oily liquid enters the tiny pores on the hydrophobic side of the silicon particle.




PNAS

Sailor Research Group

UCSD Department of Chemistry

Prior UCSD Research






“As the particle comes in contact with the oil drop, some of the liquid from the target is absorbed into it,” Sailor explains. “The liquid only wicks into the regions of the particle that have been modified chemically. The presence of the liquid in the pores causes a predictable change in the color code, signaling to the outside observer that the correct target has been located.”

The hydrophilic side of the chip behaves in a similar way; it changes color according to the identity of the hydrophilic liquid it contacts. While each individual particle is too small to observe the color code, the collective behavior of the particles facilitates the detection of the signal.

This research effort, funded by the National Science Foundation and the Air Force Office of Scientific Research, builds on previous work by the Sailor group to develop various types of sensing devices from silicon chips. A year ago, the group reported the development of silicon particles with a single sensing surface.

Link, the first author on the paper, says the dual-sided particles have the additional benefit of being able to collect at a target and then self-assemble into a larger, more visible reflector that can be seen from a distance. “The collective signal from this aggregate of hundreds or thousands of tiny mirrors is much stronger and more easily detected than that from a single mirror,” she points out. “The tendency of these particles to clump together will therefore enable us to use this technology for remote sensing applications.”

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/smartdust.htm

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>