Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a pattern in evolution of lizard groups

15.08.2003


Evolutionary biologists have developed a wide range of techniques to reconstruct the evolutionary history of particular groups of plants and animals. These techniques reveal much about the diverse patterns of evolution of life on earth, but few generalities have emerged, leading many scientists, such as the late Stephen Jay Gould, to conclude that each group of living things evolves in its own idiosyncratic manner. But now biologists at Washington University in St. Louis have proposed a general pattern among groups in the timing of evolutionary diversification.



Using novel statistical and analytical techniques, a group headed by Jonathan Losos, Ph.D. and Allan Larson, Ph.D., both Washington University professors of biology in Arts & Sciences, examined two important dimensions in the evolutionary diversification of four groups of lizards: the ages of branching points on the evolutionary trees of the lizard groups and variation among branches in morphological (body) traits, such as limb length and head size.

The researchers found that the four lizard groups differed in both respects. For example, in Australian agamid lizards, a disproportionate number of branching events occur deep (early) in the evolutionary tree, whereas, at the other extreme, among the South American Liolaemus lizards, the branching points are evenly distributed throughout the tree.


Similarly, the distribution of morphological variation differed in the four groups. In the agamids, closely related species tend to be morphologically similar and distantly related species morphologically different, whereas this relationship is much weaker for Liolaemus . In both cases, the other two lizard groups were intermediate.

What was most surprising to the researchers was that, despite the many differences among the four lizard groups, a strong overall relationship was found between the two aspects of evolutionary diversification. "This correlation was a big surprise," said Losos. "The general worldview is that the history of each lineage is unique and due to varying circumstances so that no general pattern exists. Our findings tend to dispute that."

The results were published in the August 15 issue of Science magazine. The research was supported by the National Science Foundation.

To reach their conclusions, the researchers produced a detailed genetic phylogeny (think of a branching family tree) for all species and physical data for the different species body types. Co-author James A Schulte, Ph.D., a former member of the Losos and Larson laboratories, now a post-doctoral researcher at the Smithsonian Museum of Natural History, gathered much of the phylogenetic and morphological data. Washington university graduate student Luke Harmon, the lead author on the paper, created a statistical program that uses phylogenies derived from genetic information (DNA sequences) from each species to estimate the patterns of branching and morphological change in each group.

"We can use the shape of these phylogenies, or evolutionary trees, to make conclusions about evolution," said Harmon. "For example, we can compare the lengths of branches on these family trees to determine the rate that new species were formed. Deeper branches on trees connecting species indicate older branching, while shorter ones indicate more recent speciation. People have been studying these patterns with fossil evidence for some time, but there is not much of a fossil record for lizards and many other terrestrial groups. I think the results will help biologists understand adaptive radiation better."

"We tentatively explain our main finding using ecological and biogeographic theory," said Larson. "Ecological theory suggests that ecologically similar species are unable to coexist through long periods of time in the same geographic area. If lineages with different ecological adaptations arose early in the history of a group, their descendants could coexist geographically through long periods of evolutionary time by maintaining those differences. If a group does not establish ecologically disparate lineages early in its history, lineages produced at the tips of the tree are more likely to explore a wide diversity of ecological roles."

Lizards have been on the earth for more than 200 million years. There are as many lizard species as there are mammal species, and they make excellent models to study for evolution, said Losos, who has been studying Anolis and other lizards for more than a decade. He and his collaborators plan to analyze more lizard groups to see if the general patterns revealed in this report hold.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Life Sciences:

nachricht In depression the brain region for stress control is larger
20.09.2018 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Interfacial engineering core@shell nanoparticles for active and selective direct H2O2 generation
19.09.2018 | Science China Press

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>