Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe From Depths Takes Life to Hottest Known Limit

15.08.2003

It may be small, its habitat harsh, but a newly discovered single-celled microbe leads the hottest existence known to science.

Its discoverers have preliminarily named the roughly micronwide speck "Strain 121" for the top temperature at which it survives: 121 degrees Celsius, or about 250 degrees Fahrenheit.

Announcing Strain 121’s record-breaking ability to take the heat in the August 15 issue of the journal Science, researchers Derek Lovley and Kazem Kashefi write, "The upper temperature limit for life is a key parameter for delimiting when and where life might have evolved on a hot, early Earth; the depth to which life exists in the Earth’s subsurface; and the potential for life in hot, extraterrestrial environments."

Previously, the upper known temperature limit for life had been 113 C (235 F), a record held by another hyperthermophilic-or extreme-heat-liking-microbe called Pyrolobus fumarii.

The work by Lovley and Kashefi, researchers at the University of Massachusetts, Amherst, was supported by the National Science Foundation’s Life in Extreme Environments program. Their NSF project may also yield clues to the formation of important ore deposits, the remediation of toxic contaminants, and more efficient recovery from petroleum reserves.

On a standard stovetop, water boils at 100 C, or 212 degrees F. Strain 121, however, comes from water at the ocean bottom, from a surreal deep-sea realm of hydrothermal vents. Heated to extremes by the earth’s magma, water there spouts forth through leaks in the ocean floor. The pressure of the immense depths prevents such hot water from turning to steam-even as it sometimes emerges at temperatures near 400 C (750 F).

The sample cultured by Lovley and Kashefi was collected about 200 miles offshore from Puget Sound and nearly a mile and a half deep in the Pacific Ocean by a University of Washington team led by biological oceanographer John Baross.

Baross’s crew, also supported by NSF, used a remotely operated submarine to retrieve it from the Pacific Ocean’s Juan de Fuca Ridge, a lightless seascape where vents called "black smokers" rise up like three- and four-story chimneys and continuously spew a blackening brew laced with iron and sulfur compounds.

While suffocating, crushing, scalding, toxic and downright abysmal by most living standards, the arrangement is not so bad for Strain 121 and its ilk. They are archaea, singlecelled microbes similar to, but not quite, bacteria. They often live amid extreme heat, cold, pressure, salinity, alkalinity, and/or acidity.

Archaea literally means "ancient," and Lovley and other biologists tend to call them "deep branchers" because these microbes were among the first branches on the "tree of life." According to Lovley, Strain 121-it will be given a species name after his lab finalizes the microbe’s description-uses iron the way aerobic animals use oxygen.

"It’s a novel form of respiration," Lovley says, explaining how Strain 121 uses iron to accept electrons. (Many archaea also use sulfur). As oxygen does in humans, the iron allows the microbe to burn its food for energy. Chemically, the respiration process reduces ferric iron to ferrous iron and forms the mineral magnetite.

The presence of vast deposits of magnetite deep in the ocean, its presence as a respiratory byproduct of some archaea, and the abundance of iron on Earth before life began all led Lovley and Kashefi to write that "electron transport to ferrous iron may have been the first form of microbial respiration as life evolved on a hot, early Earth."

The researchers tested the process with Strain 121 cultures kept at 100 C in oxygen-free test tubes.

"It really isn’t technically difficult. You just need some ovens to get it hot enough-and remember not to pick it up with your bare hands," Lovley says, speaking from experience. They discovered that Strain 121 grew at temperatures from 85121 C (185-250 F). (Meanwhile, Pyrolobus fumarii, the former top-temperature record-holder, wilted. After an hour at 121 C, only 1 percent of its cells were intact and none appeared viable).

"Growth at 121 C is remarkable," report Lovley and Kashefi, "because sterilization at 121 C, typically in pressurized autoclaves to maintain water in a liquid state, is a standard procedure, shown to kill all previously described microorganisms and heat-resistant spores."

Not only did Strain 121 survive such autoclaving, its population doubled in 24 hours at such heat and pressure. While they could not detect growth at higher temperatures, the researchers found that cultures that spent two hours at 130 C (266 F) still grew when transferred to a fresh medium at 103 C (217 F), with each new single-celled member appearing like a tiny tennis ball filled with cytoplasm and covered with about a dozen whip-like flagella.

Sean Kearns | NSF
Further information:
http://www.nsf.gov/home/crssprgm/lexen/start.htm
http://www.nsf.gov/od/lpa/news/03/pr0376.htm
http://www.nsf.gov/od/lpa/news/02/pr02100.htm

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>