Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute scienists find that stem cells in the bone marrow become liver cells

12.08.2003


They still don’t have a personality, and they’re waiting for the maturity call. Stem cells in our bone marrow usually develop into blood cells, replenishing our blood system. However, in states of emergency, the destiny of some of these stem cells may change: They can become virtually any type of cell – liver cells, muscle cells, nerve cells – responding to the body’s needs.



Prof. Tsvee Lapidot and Dr. Orit Kollet of the Weizmann Institute’s Immunology Department have found how the liver, when damaged, sends a cry for help to these stem cells. "When the liver becomes damaged, it signals to stem cells in the bone marrow, which rush to it and help in its repair – as liver cells," says Lapidot. His research team has found that certain molecules that govern normal development of the liver become overproduced when it is damaged, signaling to the stem cells in the bone marrow to come to the site. The scientists were able to pinpoint the signaling molecules – HGF, MMP-9 and SDF-1– and describe the homing process. HGF is involved in liver cell development and, in irregular cases, can play a role in cancer metastasis. MMP-9 assists cell migration from the blood system into various types of tissue, including liver tissue. SDF-1 is a molecule that stem cells are attracted to. The scientists discovered that large amounts of HGF and MMP-9, when overproduced in the damaged liver, enter the blood flow and increase the sensitivity of stem cells in the bone marrow to SDF-1. Suddenly able to sense SDF-1’s calling signal from the liver (which itself is amplified due to increased production and distribution of SDF-1), the stem cells migrate from the bone marrow into the blood and navigate their way to the liver. The findings could lead to new insights into organ repair and transplants, especially liver-related ones. They may also uncover a whole new stock of stem cells that can under certain conditions become liver cells. Until a few years ago only embryonic stem cells were thought to possess such capabilities. Understanding how stem cells in the bone marrow turn into liver cells could one day be a great boon to liver repair as well as an alternative to the use of embryonic stem cells.



Prof. Tsvee Lapidot’s research is supported by the Concern Foundation, Beverly Hills, CA; Ms. Rhoda Goldstein, Nanuet, NY; Levine Institute of Applied Science; M.D. Moross Institute for Cancer Research; Ms. Nora Peisner, Hungtington, MI; and Gabrielle Rich Center for Transplantation Biology Research.


Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>