Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Separating uranium from plutonium

11.08.2003


Moscow researchers have made the supercritical carbon dioxide work. Saturated with special reagents, carbon dioxide first extracts uranium from the spent nuclear fuel waste, then extracts plutonium and then flies away into the atmosphere.



As a matter of fact, the spent nuclear fuel consists of multiple elements. First of all, this is uranium that did not burn out and plutonium obtained as a result of nuclear reaction and numerous fission fragments, both radio-active and non-radio-active. Uranium and plutonium are extracted first of all: on the one hand, they are very dangerous, and on the other hand, they can be used to produce new heat-generating elements for atomic power-plants.

The so-called Purex process is used worldwide to extract uranium and plutonium. Purex process is applied not because it is perfect, but because nothing better has been invented so far. The essence of the process is as follows: old fuel elements get dissolved in the nitric acid and a special reagent – tributylphosphate – catches what is required.


As a result, two solutions are obtained based on the poisonous acid. One of the solutions contains almost the entire uranium and plutonium. The other contains the residuum: some uranium and plutonium, fission elements and corrosion products. The volume of these liquids is measured by thousands of tons.

The method proposed by the researchers under the guidance of Academician Miasoyedov, Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academy of Sciences, is revolutionary as compared to the Purex process. The reason is that the solid residual (zirconium, caesium, strontium and other fission elements) and two aqueous solutions are received at the output. One solution contains uranium salts, the other – plutonium salts. On top of that, it contains carbonic acid gas that returns back to the atmosphere. When this gas is condensed and slightly heated (up to + 35 degrees C), it passes to the supercritical condition and becomes as powerful dissolvent as, for instance, acetone. Utilization of supercritical CO2 gas is considered one of the major directions in green chemistry, which has been already evolving for several decades at a rush pace.

This particular supercritical technology extracts uranium at the first phase. To this end, the spent nuclear fuel is placed into the sealed chamber and poured with supercritical carbon dioxide under pressure, a special reagent being dissolved in the carbon dioxide. Uranium forms a complex with it and dissolves, and plutonium and fission elements – do not. They settle on the bottom of the chamber.

Then the pressure is decreased and the carbonic acid gas is passed through water. Uranium remains in the water in the form of salts solution, and pure carbonic acid gas flies away. It is interesting to note that this method allows to extract uranium practically to full extent.

The second phase is separating the residuum, i.e. the plutonium/uranium fission products mixture. To extract plutonium, the researchers want to repeat the process but with a different substance. It will react only with plutonium and will disregard other components of the mixture.

“We are proactively handling this phase of the process now, says Academician Miasoyedov. The extragent has already been found. By the way, scientists all over the world are trying to address the problem, however, the first results on separating uranium and plutonium have been achieved in Russia. Another issue is how to use plutonium for peaceful purposes. The future of nuclear power lies in fast reactors. These reactors require mixed fuel – uranium and plutonium. So, in this case the element we extracted will be helpful.”

Contact:

Boris Miasoyedov
Doctor of Chemistry, Professor, Academician
Russian Academy of Sciences
Vernadsky Institute of Geochemistry
and Analytical Chemistry (GEOKHI
Tel.: +7 (095) 237-80-81
Email: bfmyas@pran.ru

Sergey Komarov | EurekAlert!
Further information:
http://www.pran.ru

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>