Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Name that tune: How birds learn to recognize song

07.08.2003


European starling. Photo by Daniel Baleckaitis.


Researchers in a University of Chicago lab are peering inside the minds of European starlings to find out how they recognize songs and in the process are providing insights into how the brain learns, recognizes and remembers complex sounds at the cellular level. In a study published in the Aug. 7, 2003, issue of Nature, the researchers show how songs that birds have learned to recognize trigger responses both in individual neurons and in populations of neurons in the bird’s brain.

"We found that cells in a part of the brain are altered dramatically by the learning process," said Daniel Margoliash, Ph.D., professor of organismal biology and anatomy and of psychology, and co-author of the paper. "As birds learn to recognize certain songs, the cells in this area become sensitive to particular sound patterns or auditory objects that occur in the learned songs, while cells never show such sensitivity to patterns in unfamiliar songs. Specific cells in the brain become ‘tuned’ to what the bird is learning."

How the brain perceives and interprets stimuli from the external world are fundamental questions in neuroscience. There are many types of memory systems in the brain. Memories of words, sounds of voices or patterns of music are important components of human daily experience and are essential for normal communication, yet "we know little about how such memories are formed in the brain and how they are retrieved," Margoliash said.



Bird songs have captured the interest of humans for ages. "Birders can often recognize many species of birds by only their songs," he said.

For the birds themselves, however, song recognition is no casual business. The ability to match a singer to a song, often down to the level of an individual bird, can mean the difference between "a day spent wrestling through the thicket and one spent enjoying a sun-soaked perch, or the missed chance at mating with the healthiest partner around."

Lead investigator of the study Timothy Gentner, Ph.D., a research associate in the department of organismal biology and anatomy, has tapped into the recognition abilities of songbirds by training birds in the lab to recognize songs. The birds were taught to press different buttons on a small metal panel depending on the song they heard. The researchers rewarded correct responses with food and turned the lights off to convey an incorrect response.

Gentner’s earlier research has shown that European starlings learn to recognize different songs by the individual pieces that comprise each song.

"If you listen closely to a singing starling, you’ll hear that the song is really composed of much shorter sounds," Gentner said. "We call these sounds ‘motifs,’ and to produce a song, the bird will sing the same motif a few times, then switch to a new repeated motif, and then another, as long as he can keep it going. When male starlings sing, they might use only half of the motifs they know and then mix up the motifs when they sing another song."

Given this highly variable motif structure, when other starlings are learning which songs belong to which individuals, they do it by concentrating on the motifs, he said. "Even one or two familiar motifs in an otherwise unfamiliar song is enough to trigger recognition."

To examine the neural mechanisms associated with auditory memory, Gentner and Margoliash measured the electrical impulses from single nerve cells in the auditory area of the bird’s brain known as cmHV -- an area analogous to the higher-order, secondary auditory cortex in humans -- in starlings trained to recognize several songs.

The researchers recorded the response of each neuron to songs the birds had learned to recognize, to unfamiliar songs the birds had never heard before and to synthetic sounds such as white noise. As a population, the cells responded much more strongly to the songs the birds had learned to recognize than to any of the other sounds. Individually, a majority of the cells responded to only one song, and almost all (93 percent) of these cells responded to one of the songs the bird had learned to recognize. After examining the data even more closely, they found that many of these cells only responded to specific motifs in a familiar song.

"The song motifs that drive these cells so strongly are the same components of sounds that control recognition behavior in the birds," Gentner said. "It appears that we are seeing the memory traces for recognition of these complex acoustic patterns. Rather than representing all motifs equally well at any time, we find that experience modifies the brain to highlight those motifs that are the most important to the bird at that time."

"[These motifs] are the books that make up the starlings’ library of memories, and we’re learning how the starling represents those books in his brain," Margoliash said.

"Memories are not permanent," he said. "Do we lose memories because of disuse or because they are crowded out by other memories? Our research shows that the context in which you learn a sound affects how it is memorized. What are the brain mechanisms that control this process of how a memory is laid down?"

Margoliash and Gentner believe these are questions that can be answered in future research with starlings. Neuroscientists, and children learning language, are interested in the answers.

The University of Chicago Medical Center
Office of Public Affairs
5841 South Maryland Avenue -- MC6063
Chicago, IL 60637
Phone 773-702-6241 Fax 773-702-3171

| University of Chicago Hospitals
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>