Controlling body size by regulating the number of cells

Why are elephants bigger than mice? The main reason is that mice have fewer cells. Research published in Journal of Biology this week uncovers a key pathway that controls the number of cells in an animal, thereby controlling its size.

Ernst Hafen and his colleagues from the University of Zürich used fruit flies to investigate the role of the insulin-signalling pathway and in particular a molecule called FOXO. If insulin signalling is reduced, for example by starving developing fly larvae, FOXO activity increases; this then reduces the number of cells in the developing flies, causing them to be smaller.

Mammals have similar a signalling pathway, and it has been suggested to have a role in tumour formation. Hafen’s work gives us more insights into how disruption of FOXO function can lead to cancer.

The researchers used a combination of genetic techniques, over expressing FOXO in parts of the fly and analysing flies that contained no functional FOXO protein, to investigate what FOXO does. They found that flies with no functional FOXO looked normal but were more sensitive to oxidative stress, thought to be a cause of ageing. Increasing the amounts of highly active FOXO protein in the developing fly eye caused many of the eye cells to die. However, the real clue to FOXO’s function came from studying the effect of removing functional FOXO protein from flies that have a reduced ability to signal downstream of insulin.

Normally, reducing insulin signalling in developing flies causes these flies to become smaller as they have fewer, smaller cells. Yet without FOXO, these flies do not suffer such a severe size reduction. This is because they have more cells than normal insulin signalling pathway mutants. These experiments suggest that FOXO plays a role in reducing the number of cells in the developing fly if insulin is not present, by inhibiting cell division.

Hafen and his co-authors write, “In this study we provide genetic evidence that the Drosophila FOXO homolog, dFOXO is an important downstream effector of Drosophila insulin signalling and regulator of stress resistance”.

The insulin-signalling pathway may provide a crucial link between nutrient availability, stress and growth, thus allowing animals to respond appropriately to their environment.

Media Contact

Gemma Bradley alfa

More Information:

http://www.biomedcentral.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors